韩特,现就职于北京理工大学管理学院/能源与环境政策研究中心,预聘副教授、特别研究员、博士生导师,碳中和系统工程北京实验室主任助理。入选中国科协“青年人才托举”,清华大学“水木学者”,斯坦福全球前2%顶尖科学家(2020-2023连续4年),曾获清华大学优秀博士学位论文、中国运筹学会运筹应用奖等荣誉。
主要研究方向包括智慧能源管理、复杂系统智能运维、大数据驱动的工业故障诊断与预测、科学机器学习等。以第一/通讯作者身份在国际顶级SCI期刊上发表论文20余篇,入选ESI前1%高被引论文12篇,ESI前0.1%热点论文5篇。担任人工智能领域顶级SCI期刊Applied Soft Computing编委、SCI期刊IEEE Sensors Journal副编辑,SCI期刊Reliability Engineering & System Safety、IEEE Transactions on Industrial Cyber-Physical Systems等国际著名期刊客座编辑。主持国家自然科学基金、北京市自然科学基金、中国博士后科学基金特别资助等国家级、省部级纵向项目课题9项,作为核心人员参与国家级重大项目、国家重点研发计划、国家自然科学基金重点项目等多项重大研究课题。
招生学科:管理科学与工程
欢迎对智慧能源管理、机器学习、AI大模型等方向感兴趣的同学联系攻读硕士、博士研究生。
联系方式
地址:北京市海淀区中关村南大街5号北京理工大学管理学院(100081)
Email:hante@bit.edu.cn, hant15@tsinghua.org.cn
教育背景
2011/09 – 2015/06:清华大学,能源与动力工程系,工学学士
2015/09 – 2020/06:清华大学,能源与动力工程系,工学博士
2019/03 – 2019/09:阿尔伯塔大学,机械工程系,博士联合培养
工作经历
2020/09 – 2023/02:清华大学,工业工程系,博士后
2023/02至今 北京理工大学,管理学院/能源与环境政策研究中心,预聘副教授、博士生导师
2024/05至今 北京理工大学,碳中和系统工程北京实验室,主任助理
代表性论文(*通讯作者, #共同第一作者)
[1] Chang Zhonghao, Han Te*. Prognostics and health management of photovoltaic systems based on deep learning: A state-of-the-art review and future perspectives. Renewable and Sustainable Energy Reviews, 2024, 205, 114861. (SCI, JCR1区, 中科院Top期刊)
[2] Chang Zhonghao, Jia Kaiwen, Han Te*, Wei Yi-Ming. Towards More Reliable Photovoltaic Energy Conversion Systems: A Weakly-Supervised Learning Perspective on Anomaly Detection. Energy Conversion and Management, 2024, 316, 118845. (SCI, JCR1区, 中科院Top期刊)
[3] Han Te, Tian Jinpeng*, Chung C. Y.*, Wei Yi-Ming. Challenges and opportunities for battery health estimation: Bridging laboratory research and real-world applications. Journal of Energy Chemistry, 2024, 89, 434-436. (SCI, JCR1区, 中科院Top期刊)
[4] Yao Yuantao, Han Te*, Yu Jie, Xie Min. Uncertainty-aware deep learning for reliable health monitoring in safety-critical energy systems. Energy, 2024, 291, 130419. (SCI, JCR1区, 中科院Top期刊)
[5] Yao Jiachi, Chang Zhonghao, Han Te*, Tian Jinpeng*. Semi-supervised adversarial deep learning for capacity estimation of battery energy storage systems. Energy, 2024, 294, 130882. (SCI, JCR1区, 中科院Top期刊)
[6] Cheng Yongbo, Qv Junheng, Feng Ke, Han Te*. A Bayesian adversarial probsparse Transformer model for long-term remaining useful life prediction. Reliability Engineering & System Safety, 2024, 248, 110188. (SCI, JCR1区, 中科院Top期刊)
[7] Chang Zhonghao, Zhang An-jun, Wang Huan*, Xu Jiajia, Han Te*. Photovoltaic cell anomaly detection enabled by scale distribution alignment learning and multi-scale linear attention framework. IEEE Internet of Things Journal, 2024, 11(16): 27816-27827. (SCI, JCR1区, 中科院Top期刊)
[8] Zhang Xiaochen, Wang Chen, Zhou Wei, Xu Jiajia, Han Te*. Trustworthy diagnostics with out-of-distribution detection: A novel max-consistency and min-similarity guided deep ensembles for uncertainty estimation. IEEE Internet of Things Journal, 2024, 11(13): 23055-23067. (SCI, JCR1区, 中科院Top期刊)
[9] Liu Ruonan, Zhang Quanhu, Han Te*, Yang Boyuan*, Zhang Weidong, Yin Shen and Zhou Donghua. Survey on foundation models for prognostics and health management in industrial cyber-physical systems. IEEE Transactions on Industrial Cyber-Physical Systems, 2024, 2: 264-280.
[10] Yao Jiachi and Han Te*. Data-driven lithium-ion batteries capacity estimation based on deep transfer learning using partial segment of charging/discharging data. Energy, 2023, 271, 127033. (SCI, JCR1区, 中科院Top期刊, Top 0.1% ESI热点论文, Top 1% ESI高被引论文)
[11] Han Te, Xie Wenzhen*, Pei Zhongyi. Semi-supervised adversarial discriminative learning approach for intelligent fault diagnosis of wind turbine. Information Sciences, 2023, 648, 119496. (SCI, JCR1区, 中科院Top期刊, Top 0.1% ESI热点论文, Top 1% ESI高被引论文)
[12] Xie Wenzhen, Han Te*, Pei Zhongyi and Xie Min. A unified out-of-distribution detection framework for trustworthy prognostics and health management in renewable energy systems. Engineering Applications of Artificial Intelligence, 2023, 125, 106707. (SCI, JCR1区, 中科院Top期刊)
[13] Wang Zhe, Wu Zhiying, Li Xingqiu, Shao Haidong, Han Te*, Xie Min. Attention-aware temporal-spatial graph neural network with multi-sensor information fusion for fault diagnosis. Knowledge-Based Systems, 2023, 278, 110891. (SCI, JCR1区, 中科院Top期刊)
[14] Miao Yonghao, Li Chenhui, Shi Huifang and Han Te*. Deep network-based maximum correlated kurtosis deconvolution: A novel deep deconvolution for bearing fault diagnosis. Mechanical Systems and Signal Processing, 2023, 189: 110110. (SCI, JCR1区, 中科院Top期刊, Top 1% ESI高被引论文)
[15] Meng Huixing, Geng Mengyao and Han Te*. Long short-term memory network with Bayesian optimization for health prognostics of lithium-ion batteries based on partial incremental capacity analysis. Reliability Engineering & System Safety, 2023, 236, 109288. (SCI, JCR1区, 中科院Top期刊, Top 1% ESI高被引论文)
[16] Zhou Taotao, Han Te* and Enrique Lopez Droguett. Towards trustworthy machine fault diagnosis: A probabilistic Bayesian deep learning framework. Reliability Engineering & System Safety, 2022, 224: 108525. (SCI, JCR1区, 中科院Top期刊, Top 0.1% ESI热点论文, Top 1% ESI高被引论文)
[17] Han Te and Li Yan-Fu*. Out-of-distribution detection-assisted trustworthy machinery fault diagnosis approach with uncertainty-aware deep ensembles. Reliability Engineering & System Safety, 2022, 226, 108648. (SCI, JCR1区, 中科院Top期刊, Top 0.1% ESI热点论文, Top 1% ESI高被引论文)
[18] Han Te, Wang Zhe* and Meng Huixing. End-to-end capacity estimation of Lithium-ion batteries with an enhanced long short-term memory network considering domain adaptation. Journal of Power Sources, 2022, 520: 230823. (SCI, JCR1区, 中科院Top期刊)
[19] Han Te, Li Yan-Fu* and Qian Min. A hybrid generalization network for intelligent fault diagnosis of rotating machinery under unseen working conditions. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 3520011.( SCI, JCR1区, 中科院Top期刊, Top 1% ESI高被引论文)
[20] Han Te, Liu Chao*, Wu Rui and Jiang Dongxiang. Deep transfer learning with limited data for machinery fault diagnosis. Applied Soft Computing, 2021, 103: 107150. (SCI, JCR1区, 中科院Top期刊, Top 1% ESI高被引论文)
[21] Han Te, Liu Chao*, Yang Wenguang and Jiang Dongxiang. Deep transfer network with joint distribution adaptation: a new intelligent fault diagnosis framework for industry application. ISA Transactions, 2020, 97: 269-281. (SCI, JCR1区, 中科院Top期刊, Top 0.1% ESI热点论文,Top 1% ESI高被引论文)
[22] Han Te, Liu Chao*, Yang Wenguang and Jiang Dongxiang. A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults. Knowledge-Based Systems, 2019, 165: 474-487. (SCI, JCR1区, 中科院Top期刊, Top 1% ESI高被引论文)
[23] Han Te, Liu Chao*, Wu Linjiang, Sarkar Soumik and Jiang Dongxiang. An adaptive spatiotemporal feature learning approach for fault diagnosis in complex systems. Mechanical Systems and Signal Processing, 2019, 117: 170-187. (SCI, JCR1区, 中科院Top期刊, Top 1% ESI高被引论文)
[24] Han Te, Liu Chao*, Yang Wenguang and Jiang Dongxiang. Learning transferable features in deep convolutional neural networks for diagnosing unseen machine conditions. ISA Transactions, 2019, 93: 341-353. (SCI, JCR1区, 中科院Top期刊)
[25] Han Te, Jiang Dongxiang*, Sun Yankui, Wang Nanfei and Yang Yizhou. Intelligent fault diagnosis method for rotating machinery via dictionary learning and sparse representation-based classification. Measurement, 2018, 118: 181-193. (SCI, JCR1区, 中科院Top期刊)
[26] Han Te*, Jiang Dongxiang, Zhao Qi, Wang Lei and Yin Kai. Comparison of random forest, artificial neural networks and support vector machine for intelligent diagnosis of rotating machinery. Transactions of the Institute of Measurement and Control, 2018, 40(8): 2681-2693. (SCI, JCR3区, Top 1% ESI高被引论文)
[27] 韩特, 李彦夫*, 雷亚国, 李乃鹏, 李响. 融合图标签传播和判别特征增强的工业机器人关键部件半监督故障诊断方法. 机械工程学报, 2022, 58(17): 116-124.
科研项目
[1] 中国科协“青年人才托举工程”项目:“可解释、可通用”科学机器学习赋能的复杂系统智能运维,2023/12-2025/12,负责人
[2] 国家自然科学基金青年基金项目:小样本下风力发电机系统运行健康状态表征与域泛化智能诊断研究,2023/01-2025/12,负责人
[3] 北京市自然科学基金丰台前沿项目:机理-数据联合驱动的铁路物流园区智慧能源管控方法研究,2024/10-2027/09,负责人
[4] 工业与信息化部指导性软课题:面向新型工业化的企业节能降碳优化控制与数字化碳管理研究,2024/05-2024/12,负责人
[5] 安徽省科技创新攻坚计划项目:水泥窑余热低碳梯级绿色高效利用关键技术研究及应用,2024/09-2027/09,课题负责人
[6] 宁夏回族自治区重点研发专项:电化学液冷储能系统健康诊断与安全保障技术研究,2024/06-2027/05,课题负责人
[7] 安徽省科技重大专项“揭榜挂帅”项目:面向工业互联网的多模态智能感知与认知决策技术攻关,2023/05-2025/12,子课题负责人
[8] 中国博士后科学基金特别资助、面上资助:数据驱动的高速列车传动系统智能故障诊断与根原因分析方法研究,2021/05-2022/09,负责人
[9] 企业横向委托-中国船舶集团系统工程研究院:机电设备亚健康状态识别技术辅助研究及功能演示,2023/06-2024/06,负责人
学术兼职与服务
Applied Soft Computing (SCI, JCR Q1, 中科院一区Top期刊) 编委
IEEE Sensors Journal (SCI, JCR Q1, 中科院二区期刊) 副编辑
《能源与气候变化》编委
《综合智慧能源》青年编委
Reliability Engineering & System Safety (SCI, JCR Q1, 中科院一区Top期刊, FMS B类) 客座编辑, Special Issue: Scientific Machine Learning for Enhancing Reliability and Safety of AI-powered Systems
Journal of Risk and Reliability (SCI, JCR Q2, FMS B类) 客座编辑, Special Issue: Domain-Knowledge Guided Machine Learning in Safety-Critical Applications
IEEE Transactions on Industrial Cyber-Physical Systems 客座编辑, Special Issue: Machine Learning for Prognostics and Health Management of Industrial Cyber-physical Systems
Measurement Science and Technology (SCI, JCR Q1, 中国科协高质量科技期刊分级目录T1级期刊) 客座编辑, Special Issue: AI-Enabled Industrial Equipment Monitoring, Diagnosis and Health Management
Chinese Journal of Mechanical Engineering (SCI, JCR Q1,中国科协高质量科技期刊分级目录T1级期刊) 青年编委
中国系统工程学会系统可靠性工程专业委员会委员
中国机械工程学会工业大数据与智能系统分会委员
中国“双法”研究会能源经济与管理研究分会理事
全国自动化系统与集成标准化技术委员会锂电池智能制造装备标准化工作组组员(SAC/TC159/WG18)
The 2024 IEEE Global Reliability & Prognostics and Health Management Conference (IEEE GlobalRel & PHM 2024) Session Chair
The 2023 IEEE Global Reliability & Prognostics and Health Management Conference (IEEE GlobalRel & PHM 2023) Session Chair
The 6th International Conference on Electrical Engineering and Information Technologies for Rail Transportation (EITRT 2023) Session Chair
The Fourth International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD 2023) Session Organizer
The International Conference on Aerospace Structural Dynamics (ICASD 2023) Organizing Committee
The Third International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD 2022) Session Organizer
教学课程
《机器学习》(全英文)本科生课程
主要荣誉奖励
斯坦福全球前2%顶尖科学家(2024)
中国科协“青年人才托举工程”(2023)
斯坦福全球前2%顶尖科学家(2023)
中国运筹学会运筹应用奖(排名第四)(2022)
斯坦福全球前2%顶尖科学家(2022)
斯坦福全球前2%顶尖科学家(2021)
清华大学优秀博士学位论文,入选“清华大学优秀博士学位论文丛书”出版项目(2020)
清华大学“水木学者”(2020)
教育部博士研究生“国家奖学金”(2019)