CEEP-BIT WORKING PAPER SERIES

China's carbon flow: 2008-2012

Huanan Li Yi-Ming Wei Zhifu Mi

Working Paper 80 <u>http://ceep.bit.edu.cn/english/publications/wp/index.htm</u>

Center for Energy and Environmental Policy Research Beijing Institute of Technology No.5 Zhongguancun South Street, Haidian District Beijing 100081 October 2014

This paper can be cited as: Li H, Wei Y-M, Mi Z. 2014. China's carbon flow: 2008-2012. CEEP-BIT Working Paper.

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos: 71020107026, 71273031, and 71401010), China Postdoctoral Science Foundation (No: 2014M550024). The views expressed herein are those of the authors and do not necessarily reflect the views of the Center for Energy and Environmental Policy Research.

© 2014 by Huanan Li, Yi-Ming Wei and Zhifu Mi. All rights reserved.

The Center for Energy and Environmental Policy Research, Beijing Institute of Technology (CEEP-BIT), was established in 2009. CEEP-BIT conducts researches on energy economics, climate policy and environmental management to provide scientific basis for public and private decisions in strategy planning and management. CEEP-BIT serves as the platform for the international exchange in the area of energy and environmental policy.

Currently, CEEP-BIT Ranks 47, top 3% institutions in the field of Energy Economics at IDEAS (http://ideas.repec.org/top/top.ene.htm), and Ranks 52, top 3% institutions in the field of Environmental Economics at IDEAS (http://ideas.repec.org/ top/top.env.html).

Yi-Ming Wei

Director of Center for Energy and Environmental Policy Research, Beijing Institute of Technology

For more information, please contact the office:

Address:

Director of Center for Energy and Environmental Policy Research Beijing Institute of Technology No.5 Zhongguancun South Street Haidian District, Beijing 100081, P.R. China

Access:

Tel: +86-10-6891-8551 Fax: +86-10-6891-8651 Email: ceeper@vip.163.com Website: http://ceep.bit.edu.cn/english/index.htm China's Carbon Flow: 2008-2012

Huanan Li^{a, b,*}, Yi-Ming Wei^{a, b}, Zhifu Mi^{a, b}

^a Center for Energy and Environment Policy Research, Beijing Institute of Technology, Beijing 100081, China

^b School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China Email address of corresponding author: *huanan3721@163.com*

Email address of co-authors: Yi-Ming Wei: wei@bit.edu.cn; Zhifu Mi:mizhifu@126.com

ABSTRACT

As the world's largest CO₂ emitter, China's CO₂ emissions have become one of the most popular issues concerned by domestic and foreign researchers. Therefore, analysis of the current status of China's carbon emissions is very important. After drawing a chart of China's carbon flow in 2012, based on the IPCC carbon emission inventory method and China's energy balance table, this paper gives a detailed description of the current status of China's carbon flow and compares the changing characteristics of China's carbon flow between 2008 and 2012. The results show that 75.12% of total CO₂ emissions flow mainly into several sectors, such as ferrous sectors, and the chemical industry in the terminal sub-sectors. Although China's thermoelectric efficiency increased dramatically during past four years, emissions from the heat and power production sector are still increasing due to China's large demand for heat and power. In the ferrous metal and chemical industry sectors, CO₂ emissions are mainly energy-related, while in the non-metallic mineral sector, CO₂ emissions are mainly from process CO₂ emissions. In different terminal sub-sectors, the main carriers of CO_2 flow are different, thus, related CO_2 reduction policies should also be targeted. In addition, some valuable suggestions are given in this paper.

Key words: CO2 flow chart; CO2 reductions; China

1. Introduction

As global warming has become one of the most serious environmental problems worldwide, issues related to carbon dioxide (CO₂) emission have attracted close attention in the worldwide. Global warming is largely attributed to the effect of emissions of greenhouse gases, such as CO₂, from the combustion of fossil fuels (Yue-Jun Zhang, et al., 2014). According to several studies (BP, 2013; Zhu, et al., 2010; Hu and Lee, 2008; Li, 2010; Wang and Watson, 2010), China surpassed the United States in CO₂ emissions in 2008, becoming the world's largest emitter, which makes China facing more and more pressures on the control of its CO₂ emissions. After four years, China's CO₂ emissions rapidly grew from 6.78 billion tons to 8.18 billion tons, with an average annual growth rate of 4.81%. A series of questions should be answered for a clearer understanding of China's carbon emissions, such as how about the status quo of China's carbon emissions? Are there any changes during the past four years? Thus, an analysis of the changing characteristics of China's carbon emissions from 2008 to 2012 is necessary.

From the perspective of social system, carbon flow refers to the amount of CO_2 in theory, carried by different energy carriers such as coal and oil, and released in all aspects of the social system. It is a virtual concept, which can clearly describe the status of CO_2 emission in the human social systems. Carbon flow chart is a useful tool for research on the status of CO_2 emission (Li, 2006; Xie, 2009; Pei and Liao, 2014; Wei, et al., 2008). The authors (Mu and Li, 2013) analysed China's Carbon emissions for 2008 based on a more comprehensive and detailed carbon flow chart published in the journal of "Energy Policy". As a follow-up study, we draw China's carbon flow chart for 2012 in this paper, and compare the characteristics of its changes between 2008 and 2012. Different from other researches, CO_2 flow chart in this paper includes not only

energy-related carbon emissions but also carbon emissions from production process, namely process CO_2 emissions. Methodology and main results are described in section 2 and 3. Finally, we conclude this study.

2. Methodology

For the calculation, we merge the sub-sectors classified in 2013 Energy Statistical Yearbook based on the classification method of IPCC2006, shown in table 1. In this paper, we take CO_2 emissions indirectly produced by heat and electricity consumptions of terminal sub-sectors as their indirect CO_2 emissions, which can be calculated based on energy processing and conversion data from energy balance table of China. Equivalently, indirect CO_2 emissions are those carried by different fossil fuels in theory, which are theoretically regarded as raw materials for electricity and heat production. After getting different amounts of fossil fuels with the equivalent heating value of electricity and heat produced, we can calculate CO_2 emissions carried by these fuels in theory. CO_2 emissions from "Energy processing and conversion sub-sector" only refer to the loss emissions during the process of energy production, that is, the difference value between its total CO_2 emissions and the indirect CO_2 emissions mentioned above. Analysis framework is shown in Figure 1.

2.1 CO₂ Accounting Method

1. Energy-related CO₂ emission

Energy-related CO₂ emissions are calculated according to Eq.(1). Total CO₂ emissions in the *i*th sector in period *t* is estimated based on energy consumption (E_{ij}^{t}) , carbon emission factors (EF_{j}) , and fraction of oxidizised carbon (O_{j}) by fuel *j* as follows:

$$CE_{i}^{t} = \sum_{j} CE_{ij}^{t} = \sum_{j} E_{ij}^{t} EF_{j} \left(1 - CS_{j}^{t}\right) O_{j} M$$

$$\tag{1}$$

Where CS_j^t is the fraction of the *j*th fuel which is not oxidised as raw materials in year *t*. Thus, total CO₂ emissions of all economy sectors at time *t* is,

$$CE^{t} = \sum_{i} CE_{i}^{t} .$$
⁽²⁾

2. Process CO₂ emission

In this paper, four main industries, namely cement, lime stone, calcium carbide, iron and steel industry, are considered for calculating process CO₂ emissions. For the production of cement, lime and calcium carbide:

$$E_{CO2} = A \times F \tag{3}$$

For the production of iron and steel:

$$E_{CO2} = AD_i \times EF_i + AD_d \times EF_d + (AD_r \times F_r - AD_s \times F_s)M$$
⁽⁴⁾

The formula introduction and parameters are shown in table 2 and 3.

2.2 Data Sources

Data used in this paper are mainly from China Statistical Yearbook (CSY, 2010-2013), Chinese Energy Statistical Yearbook (CESY, 2010-2013), IPCC report (2006), and industry Statistics Yearbooks (2010-2013). Acronyms of classification are listed in table 4.

3. Results and Discussion

3.1 CO₂ flow chart of 2012

3.1.1 China's carbon flow increased significantly in these years

Based on data from "China's Energy Statistical Yearbook", we calculated the inventory of

China's carbon flow for 2009-2012. We draw China's carbon flow chart for 2012 for analysis as shown in Figure 2, while carbon flow for other years are listed in Appendix A, B and C. In this paper we suppose CO₂ is "carried" by fossil fuels, electricity and heating power. Different colours represent different varieties of CO₂ carriers, and size of area represents the relative magnitude of CO_2 flow. Graph on the left is the CO_2 flowing into China's social system, which is carried by primary energy, including imported energy. Obviously, coal brings the maximum amount of CO₂ into China's CO₂ flow system with a value of 6500.49 million tons, which accounts for 77.59% of the total primary CO₂ flow, decreasing 0.61 percents than that in 2008. The high percentage reflects the unitary structure of carbon emission in China, which is not conducive to CO₂ reduction. The middle part is the CO₂ flowing into energy processing and conversion sub-sectors. We can find that 96.73% of the CO₂ flow into energy processing and conversion sectors in 2012, in which the sub-sector of electricity and heat production occupies 3296.03 million tons, increased 27.96% in total than that in 2008. Above and below parts denote the outflow of CO₂ emissions from China's social and economic system, including exported CO₂, transmission and distribution loss emissions and conversion loss emissions. The right part is the CO₂ flowing to the terminal sub-sectors. After flowing through energy processing and conversion sector, 21.93% of China's CO₂for 2012 leaves the system in the form of conversion loss emissions, while the remainder flows into terminal sub-sectors. Noteworthy, the conversion loss emissions of the sub-sector of electricity and heat production are huge, reaching up to 1752.39 million tons, accounting for 53.17% of the total CO₂ flowing into this sub-sector. This shows that efficiency of heat and electricity production in China should be improved greatly. There is a small amount flows out of the system in the form of exports and transmission and distribution

losses, a total amount of which is 127.68 million tons in 2012, less than that in 2008. Although this part of CO₂ doesn't release into the environment, but it reflects the waste of energy fuels and should be reduced. In terminal sub-sectors, the CO₂ mainly flows into five main sub-sectors, that is, ferrous sector, chemical industry, non-metallic mineral sector, transportation sector, and residential sector, all of which accounts for 75.12% of the total CO₂ flow. The process CO₂ emissions in non-metallic mineral sector is maximum, reaching up to 624.17 million tons, accounting for 55.76% of its total CO₂ flow, followed by that in ferrous sector. From left to right, the CO₂ flow chart shows a clear and detailed circulation of carbon.

3.1.2 CO₂ emissions from terminal sectors differ greatly

Figure 3 shows the proportion of CO₂ emissions from terminal sub-sectors in 2012, which contains both energy-related CO₂ emissions and process CO₂ emissions. Clearly, the CO₂ flowing to ferrous metal sector is maximum, accounting for 26% of total terminal CO₂ emissions, followed by non-metallic mineral sector, accounting for 18%. CO₂ emissions from chemical industry, transportation and residential sectors are similar, all accounting for approximately 10% of total terminal CO₂ emissions. Obviously, these sectors absorb most of the carbon flow in China's carbon system, having the most significant impact on reduction of China's CO₂ emissions. In Figure 4, we find that energy-related CO₂ emissions from chemical industry sector, ferrous metal sector, and non-metallic mineral sector account for 97.31%, 85.02% and less than 50% respectively, their process CO₂ emissions sharing a high proportion. CO₂ emissions from these sub-sectors are the greatest, accounting for 56% of total CO₂ emissions from terminal sub-sectors.

CO₂ emissions from production process in some sectors should not be overlooked when we focus on reductions in energy-related carbon emissions.

3.2 Trend analysis from 2008 to 2012

3.2.1 Total Carbon emissions increased rapidly, especially from coal

Total CO₂ emissions from primary energy consumption increased nearly 21% from 2008 to 2012, with an average annual growth rate of 4.81% and an aggregate amount of 8.18 billion tonnes, as shown in Figure 5. From the perspective of primary energy carriers, there is little change in the structure of carbon emissions. The proportion of CO₂ emissions caused by coal consumption slightly decreased, remaining at approximately 80%, while the proportion of CO₂ emissions from oil and natural gas consumption both increased slightly. For indexes of per capita CO₂ emissions and CO₂ intensity, the basic trend has not changed: namely continuous growth in per capita CO₂ emissions and a decline in CO₂ intensity. The average annual growth rate of per capita CO₂ emissions increased by up to 5.04%, while carbon intensity decreased by 3.97% each year on average. Because of the large population base and rapid economic growth, China's CO₂ emissions will inevitably continue to rise in the future. The primary energy carbon flow refers to the CO₂ carried by primary energy, including that produced in China and imported from other countries. As shown in Figure 6, obviously, the flow of primary energy carbon has increased significantly in 2012 when compared to 2008, especially that carried by natural gas, which grew 71.30%. From the perspective of carbon flow structure, the primary energy carbon flow is still coal-based, with the proportion of the carbon flow carried by coal reaching 78%. The proportion of the carbon flow carried by crude oil remains unchanged, and that carried by natural gas drops

one percentage point to 3%, which has a higher growth rate in the amount of emissions. Overall, coal is absolutely the main body in China's CO₂ emissions structure, and this feature will not change in the near future.

3.2.2 Reduction in loss emission flows

From figure 7, it's obvious that the CO2 outflow of conversion loss emissions is the most significant, far more than other CO₂ outflows. The proportion of the CO₂ outflow caused by energy exports fell by 33.63% in 2012 compared to 2008, indicating that with the rapid increase of China's economy and energy consumption, the vast majority of China's primary energy carbon flows into China's social and economic system. Transmission and distribution losses are the components of the CO₂ flow carried by the primary energy that are lost in the process of energy transmission and distribution. Although this part of CO2 is not emitted into the atmosphere because there is no combustion, it reflects the efficiency of the systems used to transport energy. In Figure 7, the amount of CO_2 lost to transmission and distribution is slightly smaller in 2012 than in 2008, showing an improvement in the efficiency of energy transportation. Conversion loss emissions denote the extra CO₂ emissions in the production process of secondary energy. We found that conversion loss emissions increased by 20.56% in the heat and power production sector shown in table 5, while the proportion of the conversion loss emissions to the sector's total CO₂ flow decreased from 56.13% to 53.17% as shown in Figure 7. This indicates that although energy processing efficiency increased, conversion loss emissions are still increasing due to the large demand for heat and power caused by China's economic development. Interestingly, the conversion loss emissions from the refining, coking and gas production sector decreased from

2008 to 2012, which reflects efficiency improvements in these two sectors that caused a reduction in the total amount of CO_2 in China.

3.2.3 Process CO₂emission flows increased rapidly

As shown in Figure 8, it's obvious that the process CO₂ emissions of all four main sectors have increased significantly. Process CO₂ emissions from cement industry in China are the largest in recent years, with total emissions researching 500 million tons, followed by iron and steel industry. However, from the perspective of emissions growth rate, iron and steel industry increases 10.33%, followed by calcium carbide industry at 8.25%. These four sectors are all basic industries in China, whose development will inevitably continue to cause the growth of process CO₂ emissions, particularly in the cement industry and iron and steel industry. We conducted a comparative study for the two major sources of CO₂ emissions, as shown in Figure 9. Both energy-related CO₂ emissions and process CO₂ emissions in China have greatly increased in recent years, especially process CO₂ emissions, which increased by an average of over 6% a year from 1994 to 2012, a higher average annual growth rate than energy-related CO₂ emissions. The proportion of process CO₂ emissions to total CO₂ emissions is stable at approximately 10%, which is an enormous amount in the context of the huge base of China's CO₂ emissions. Thus, policy makers should pay more attention to process CO₂ emissions.

3.2.4 Changing trends of CO₂ emission structures of terminal sub-sectors are very different

In this paper, CO₂emission structure denotes the proportion of sub-sector's CO₂ emissions to the total terminal CO₂ emissions, including both energy-related and process CO₂ emissions. It's obvious that there are nine departments whose CO₂ emission structures increased as shown in Figure 10. The structures of ferrous metal industry and transportation sector have the greatest growth with percentages of 1.2% and 0.86%. In sectors with decreasing CO₂emissions structure, the non-metallic mineral and mining (excluding fuels) sectors are most representative, with percentage declines of 1.38% and 0.60%. In recent years, resource depletion accelerated with the rapid economic development in China. Therefore, development of related industries is also restricted. The changing trends of CO₂ emissions structure of these industries also prove this phenomenon. Different carriers of CO₂ emissions can reflect CO₂ emission structure and energy use of each sub-sector. From table 6, the CO₂ flows of eight sub-sectors in the total of eighteen terminal sub-sectors, such as non-ferrous metals and transport equipment, are mainly from their indirect emissions, while seven sectors are mainly carried by coal. This shows that saving energy through electricity and coal is equally important for CO₂ reduction in terminal sub-sectors. The CO₂ flow carried by coking products in the ferrous metal industry is the most significant, thus, targeted CO₂ reduction policies are essential in this sector. From the viewpoint of structural changes, proportions of CO₂ flows carried by coal in most sub-sectors decreased between 2008 and 2012, meaning that traditional coal resources are increasingly being replaced by other energies in terminal sub-sectors. The proportions of CO₂ flows carried by petroleum products in agricultural and residential sectors increased while declining in other sectors, which reflect that the usage of petroleum products in some terminal sub-sectors is gradually restricted. Notably, the proportions of CO₂ flows carried by electricity increased between 2008 and 2012 in all sectors, indicating that electricity has been applied more and more widely.

4. Conclusions and Policy Implications

After drawing China's carbon flow chart for 2012, this paper gives a detailed description of

China's carbon flow for 2012 and compares the changing characteristics of China's CO_2 flow during 2008 and 2012. The specific conclusions derived from the present study can be listed as follows:

- (1) Coal and oil are main CO₂ carriers in China, which accounts for 97% of the total CO₂ flow. In the terminal sub-sectors, 75.12% of the CO₂ flow mainly into several sectors such as ferrous sectors, chemical industry.
- (2) For the comprehensive indexes of per capita CO₂ emissions and CO₂ intensity, basic trend has not changed, that is, continuous increase in per capita CO₂ emissions and decline in CO₂ intensity, while there is a little change in the structure of carbon emissions.
- (3) Although the efficiency of energy processing and conversion in China increased dramatically during past four years, the conversion loss emissions of the heat and power production sector are still increasing due to the large demand for heat and power with China's economic development.
- (4) CO₂ emissions are mainly from energy-related CO₂ emissions in ferrous metal and chemical industry sector, while that are mainly from process CO₂ emissions in non-metallic mineral sector. In different terminal sub-sectors, main carriers of the CO₂ flow are really different, thus, CO₂ reduction policies should also be targeted.

From the results of this paper, we present the following policy recommendations. Firstly, characteristics of CO_2 emission of different sectors are very different and China's CO_2 emissions system is very complex. Therefore, CO_2 reduction policies should be distinguished among different sectors. More stringent targets for CO_2 emission reductions should be set in the sectors with large CO_2 flows, such as the energy conversion sectors. CO_2 reductions in these sectors will

have an important and positive impact on China's overall CO_2 reductions. Strengthening the implementation of CO_2 reduction measures in the terminal sub-sectors with large CO_2 flows, such as the ferrous metal, chemical industry, non-metallic mineral, transportation and residential sectors, will also play a positive role in CO_2 reductions. Second, CO_2 reduction policies for different CO_2 carriers should be different. For example, major carbon flow carriers of different terminal sectors are very different: some sectors have coal as the main carrier, while some have electricity. Therefore, detailed and targeted reduction policies and measures differentiating different CO_2 carriers will be more effective. Third, process CO_2 emissions in the cement industry and iron and steel sectors are abundant and growing rapidly. Therefore, the development of alternative raw materials should be strengthened, and appropriate policies should be made for CO_2 reductions in the production processes of these two sectors. Finally, in the structure of CO_2 emissions in terminal sectors, policy makers should focus on the sectors that have fast growth in the proportion of CO_2 emissions, such as the ferrous metal and transportation sectors, analyse the reason for the accelerated growth of CO_2 emissions, and make appropriate countermeasures in a timely fashion.

5. Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos: 71020107026, 71273031, and 71401010), China Postdoctoral Science Foundation (No: 2014M550024).

References

BP, 2013. BP Statistical Review of World Energy 2013, BP.

CCA, 2010-2013. China Cement Almanac, China Cement Association.

- CESY, 2010-2013. China Energy Statistical Yearbook, National Bureau of Statistics of China. National Development and Reform Commission.
- CSY, 2010-2013. China Statistical Yearbook, National Bureau of Statistics of China.
- CSY, 2010-2013. China Steel Yearbook, China Steel Yearbook Editorial Board.
- Hu, J.L., Lee, Y.C., 2008. Efficient three industrial waste abatement for regions in China. International Journal of Sustainable Development and World Ecology. 15 (1), 132–144.
- IPCC, 2006. Greenhouse Gas Inventory: IPCC Guidelines for National Greenhouse Gas Inventories. United Kingdom Meteorological Office, Bracknell, England.
- Li, Z., Fu, F., Ma, L.W., Ni, W.D., 2006. China's energy flow chart based on energy balance sheet. Energy of China. 28 (9), 5–10.
- Li, Z.D., 2010. Quantitative analysis of sustainable energy strategies in China. Energy Policy. 38 (5), 2149–2160.
- Mu, H.L., Li, H.N., Zhang, M., Li, M., 2013. Analysis of China's Carbon Dioxide flow for 2008. Energy Policy. 54, 320-326.
- Pei, M.L., Liao, H., Wei, Y.M., 2012. Analysis of the Energy Flow of China in 2012. Energy of China. 36(6), 40-43.
- Wang, T., Watson, J., 2010. Scenario analysis of China's emissions pathways in the 21st century for low-carbon transition. Energy Policy. 38 (7), 3537–3546.
- Wei, Y.M., Liu, L.C., Wu, G., 2008. China Energy Report (2008): CO₂ emissions Research. Science Press, Beijing.
- Xie, S.C., Hong, C.C., Li, L., Cheng, H., Zhen, C., Pu, D., Jun, L., 2009. The energy related carbon dioxide emission inventory and carbon flow chart in Shanghai City. China Environmental

Science. 29(11), 1215-20.

- Yue-Jun Zhang, Zhao Liu, Huan Zhang, Tai-De Tan, 2014. The impact of economic growth, industrial structureand urbanization on carbon emission intensity in China. Nat Hazards. 73, 579–595.
- Zhu, L.J., Yue, C., Wang, S.P., Fang, J.G., 2010. Carbon Emissions in China and Major Countries from 1850 to 2008. Acta Scientiarum Naturalium Universitatis Pekinensis. 46(4), 479-504.

Figures

Fig. 2. China's CO₂ flow chart for 2012

Fig. 3. Comparison of CO₂ emissions from terminal sectors in China in 2012

Fig. 4. Comparison of energy-related and process CO₂ emissions in three sectors in 2012

Fig. 5. Indicators of China's energy-related carbon emissions

Fig. 6. Changes in the CO₂ flowing into China's carbon system carried by primary energy

Fig. 7. Comparison of the CO₂ outflow between 2008 and 2012.

Fig. 8. Comparison of process CO₂ emissions between 2008 and 2012.

Fig. 9. Comparison of energy-related and process CO₂ emissions in recent years.

Fig. 10. Comparison of the structure of terminal CO_2 emissions between 2008 and 2012.

Classification in this article

Sector code	Sub-sectors in IPCC classification	Sub-sectors in China's Energy Statistical Yearbook
1	Black metal	Smelting and Pressing of Ferrous Metals.
2	Non-ferrous metals	Smelting and Pressing of Non-ferrous Metals.
		Manufacture of Raw Chemical Materials and Chemical Products;
3	Chemical industry	Manufacture of Medicines; Manufacture of Chemical Fibers;
		Manufacture of Rubber and Plastics Products.
4	Dula nonon and print	Manufacture of Paper and Paper Products; Printing and
4	Puip, paper and print	Reproduction of Recording Media.
	Food processing,	Processing of Food from Agricultural Products; Manufacture of
5	beverages and	Foods; Manufacture of Liquor, Beverages and Refined Tea;
	tobacco products	Manufacture of Tobacco.
6	Non-metallic mineral	Manufacture of Non-metallic Mineral Products.
7	T	Manufacture of Automobiles; Manufacture of Railway, Ship,
/	Transport equipment	Aerospace and Other Transport Equipments.
		Manufacture of General Purpose Machinery; Manufacture of
	Machinery	Special Purpose Machinery; Manufacture of Electrical Machinery
8		and Apparatus; Manufacture of Computers, Communication and
		Other Electronic Equipment; Manufacture of Measuring Instruments
		and Machinery.
		Mining and Washing of Coal; Extraction of Petroleum and Natural
	Mining (avaluding	Gas; Mining and Processing of Ferrous Metal Ores; Mining and
9	fuels)	Processing of Non-Ferrous Metal Ores; Mining and Processing of
	fuels)	Nonmetal Ores; Support Activities for Mining; Mining of Other
		Ores.
10	Wood and wood	Processing of Timber, Manufacture of Wood, Bamboo, Rattan,
10	products	Palm, and Straw Products; Manufacture of Furniture.
11	Construction	Construction
		Manufacture of Textile; Manufacture of Textile, Wearing Apparel
12	Textiles and leather	and Accessories; Manufacture of Leather, Fur, Feather and Related
		Products and Footwear.
		Manufacture of Articles for Culture, Education, Arts and Crafts,
		Sport and Entertainment Activities; Manufacture of Metal Products;
13	Non-specific industry	Other Manufacture; Utilization of Waste Resources; Repair Service
		of Metal Products, Machinery and Equipment; Production and
		Supply of Water.

Symbol introduction in formulas

Item	Illustration
i	industrial sector
j	fuel kind
t	year
CE^{t}_{ij}	CO ₂ emission of the <i>i</i> th sector based on fuel type j in year t
E^{t}_{ij}	total energy consumption of the <i>i</i> th sector based on fuel type j in year t
EF_j	the carbon emission factor of the <i>j</i> th fuel (t C/TJ)
CS_j^t	the fraction of the jth fuel which is not oxidized as raw materials in year t
O_j	the fraction of carbon oxidized of fuel <i>j</i>
М	the molecular weight ratio of carbon dioxide to carbon (44/12)
$E_{\rm CO2}$	process CO ₂ emissions
A	production amount in different sectors(cement production, lime production, calcium
21	carbide production)
F	emission factor, for cement production (0.538 t/t), lime production (0.683 t/t), calcium
	carbide production (1.154 t/t)
AD_i	consumption of lime stone in iron and steel sector
EF_i	emission factor of lime stone as solvent consumption (0.43 t/t)
AD_d	consumption of dolomite in iron and steel sector as solvent
EF_d	emission factor of dolomite as solvent consumption (0.474 t/t)
$AD_{\rm r}$	amount of pig iron for steelmaking
F_r	average carbon rate of pig iron for steel making (4.1%)
$AD_{\rm s}$	amount of steel production
$F_{\rm s}$	average carbon rate of steel products (0.248%)

Note: Parameters are from IPCC.

Fuel	EF	0	Fuel	EF	0
1 uci	(t C/TJ)	U	1 001	(t C/TJ)	U
Raw coal	25.8	0.9	Fuel oil	21.1	0.98
Anthracite	27.4	0.94	Gasoline	18.9	0.98
Bitumite	26.1	0.93	Diesel oil	20.2	0.98
Lignite	28	0.96	Kerosene	19.6	0.98
Moulded coal	33.6	0.9	NGL	17.2	0.98
Washed coal	25.41	0.93	LPG	17.2	0.98
Coke	29.5	0.93	Refinery gas	18.2	0.98
Coke oven gas	13.58	0.98	Other petroleum products	20	0.98
Other coking products	29.5	0.93	Natural gas	15.3	0.99
Crude oil	20.1	0.98			

Carbon emission factors (EF) and fraction of carbon oxidized (O).

Note: Parameters are from IPCC.

The acronyms of classification ^a

Source	Sector		Sub-sector ^b	Abbreviation			
		Electricity and h	neat production	EH			
	Energy industry	EnergyPetroleum processing, coking and nuclear fuelindustryprocessing					
	-	Gas production		G			
		Ferrous metal		FM			
		Non-ferrous me	tal	NFM			
		Chemical indust	try	CI			
		Pulp, paper and	print	PPP			
		Food processing products	g, beverages and tobacco	FBT			
г	Industry and	Non-metallic m	NMM				
Energy	Construction	Transport equip	TE				
-related		Machinery	M				
		Mining (excludi	Mining (excluding fuels)				
		Wood and wood	l products	WW			
		Construction	С				
		Textiles and lea	TL				
		Non-specific ind	lustry	NS			
	Agriculture			Α			
	Transportation			Т			
	Service			S			
	Resident	esident					
	Other			0			
	Non-	metallic mineral	Cement production	CP			
Drocess	Non-	metallic mineral	Lime industry	LI			
FIOCESS	Cher	nical industry	Calcium carbide	CC			
	Ferro	ous metal	Iron and steel industry	IS			

Note: ^a the table is same as "Table 1" in the reference (Hailin M, Huanan Li, 2013), for this is the follow-up study of that paper .^b Sub-sectors of energy industry belong to energy processing and conversion sub-sector, while all other sub-sectors are terminal sub-sectors.

-	Year -		Con	version Los	s Emissions			
		E	H	ŀ	PCN	G		
	2008	1453.55 up		23.33	down	15.3	down	
_	2012	1752.39	20.56%	17.38	25.50%	6.2	59.48%	

Comparison of conversion loss emissions between 2008 and 2012

Contor		Direct emissions		Indirect emissions		
Sector	Coal	Coal Coking Products Pet		Electricity		
Total	31.26-25.83	21.53-21.29	15.37-15.42	20.45-23.59		
FM	12.96-14.53	74.09-71.31	0.69-0.24	10.54-11.63		
NFM	18.56-12.20	12.86-9.12	3.95-2.15	55.72-65.18		
CI	36.19-30.34	12.53-11.65	3.59-1.24	20.43-22.76		
PPP	58.15-45.77	0.29-0.08	4.02-2.10	23.17-30.54		
FBT	59.50-47.72	0.70-0.45	6.06-4.83	22.07-30.99		
NMM	77.32-68.27	2.42-4.62	5.30-2.80	11.99-16.02		
ТЕ	27.81-16.89	9.83-10.18	13.84-8.14	36.46-46.87		
M	19.09-11.26	15.42-18.75	11.34-5.50	45.89-56.91		
M-F	52.68-49.22	2.00-2.74	7.43-7.47	20.52-25.22		
WW	49.03-37.84	0.59-0.63	7.82-5.69	37.92-52.38		
С	16.91-12.30	0.45-0.16	27.58-22.99	17.34-17.55		
TL	38.06-23.51	0.26-0.32	5.67-2.98	38.24-52.68		
NS	21.04-11.09	4.50-6.74	8.43-4.99	62.98-72.10		
A	29.54-28.81	1.55-0.00	39.68-41.93	29.04-28.87		
T	2.83-1.73	0.00-0.00	89.27-87.96	4.10-4.77		
S	39.93-34.37	0.80-0.20	11.16-11.10	38.20-42.70		
R	33.72-26.67	2.26-0.87	8.69-12.53	27.97-31.43		
0	18.96-16.74	0.20-0.09	39.43-36.47	34.72-39.86		

Comparison of CO_2 flows carried by different fuels between 2008 and 2012

Appendix A: Carbon Flow of Terminal Sub-sectors and Process Emissions of China in 2009

Terminal sub	-sector	Coal	Cokin g produ	Crude oil	Refine d oil	Other petrol eum	Natura l gas	Heat	Electri city	Total
	EH	59.64	0.79	0.02	4.14	0.10	0.10	4.90	90.34	160.03
	PCN	28.76	12.01	4.31	9.73	149.44	4.45	23.67	15.21	247.59
	G	1.57	1.01	0.01	0.42	0.97	0.48	0.25	2.25	6.95
	BM	171.72	893.82	0.00	5.81	1.11	4.06	18.24	128.72	1223.4
	NFM	27.28	23.09	0.02	4.80	4.14	1.45	6.90	82.48	150.15
	CI	224.78	72.93	5.56	19.34	62.21	37.95	57.06	131.48	611.30
	PPP	45.37	0.20	0.01	2.66	0.17	0.34	11.53	18.11	78.39
	FBT	58.92	0.56	0.01	6.11	0.46	1.06	10.54	22.88	100.54
	NMM	430.31	16.42	0.27	23.97	5.25	9.65	0.95	68.07	554.89
Energy-relat	TE	11.84	4.75	0.00	5.14	0.54	2.62	2.19	18.10	45.18
ed CO ₂	M	23.78	24.80	0.01	14.11	1.50	4.08	4.46	57.95	130.70
emissions	M-F	141.12	4.63	14.71	18.51	2.04	19.71	3.67	56.41	260.80
	WW	8.88	0.10	0.01	1.36	0.04	0.17	0.57	7.27	18.40
	С	12.37	0.16	0.00	21.14	34.19	0.21	0.57	13.51	82.15
	TL	41.51	0.28	0.02	5.70	0.20	0.36	17.59	43.49	109.15
	NS	13.29	3.23	0.01	5.72	0.74	0.60	0.82	44.72	69.11
	A	30.71	1.28	0.00	40.08	0.13	0.00	0.07	30.09	102.36
	Т	12.46	0.02	0.00	408.11	1.69	17.62	1.32	19.75	460.98
	S	38.35	0.74	0.00	11.08	1.96	5.18	3.02	36.40	96.73
	R	170.11	10.05	0.00	50.02	46.38	38.41	59.52	155.99	530.48
	0	37.87	0.30	0.00	67.74	1.51	5.11	6.29	70.11	188.94
Process	CI		537	'.06		IS		191	.55	
emissions	LI		12	.00		CC	17.17			

Unit: Million tons

Appendix B: Carbon Flow of Terminal Sub-sectors and Process Emissions of China in 2010

Unit: Million tons

Terminal sub-sector		Coal	Cokin g produ	Crude oil	Refine d oil	Other petrol eum	Natura l gas	Heat	Electri city	Total
	EH	56.43	0.52	0.01	2.42	0.13	0.15	6.03	99.87	165.55
	PCN	25.24	13.31	2.99	7.32	151.69	6.74	26.23	18.10	251.63
	G	1.25	0.77	0.00	0.18	0.83	0.70	0.32	2.65	6.69
	BM	191.05	902.43	0.01	4.21	1.30	4.39	21.99	147.65	1273.0
	NFM	24.17	17.71	0.02	5.40	6.55	1.95	8.63	100.18	164.60
Energy-relat	CI	216.52	60.20	6.63	16.52	82.94	40.13	66.32	145.01	634.27
ed COs	PPP	39.80	0.09	0.00	2.51	0.13	0.49	13.43	20.20	76.65
	FBT	51.21	0.39	0.00	6.30	0.50	1.28	11.56	25.21	96.45
emissions	NMM	397.30	15.79	0.07	21.32	35.35	9.15	1.18	78.39	558.56
	TE	11.34	4.89	0.01	5.56	0.71	2.75	2.74	25.30	53.29
	М	23.10	23.68	0.02	14.24	1.60	5.18	5.45	70.55	143.80
	M- F	134.43	5.84	14.57	18.65	1.97	22.57	4.36	62.12	264.51
	WW	7.72	0.09	0.01	1.56	0.05	0.14	0.58	8.22	18.37
	С	13.04	0.17	0.00	24.45	61.80	0.25	0.59	15.47	115.76

	TL	34.70	0.41	0.00	5.51	0.19	0.43	19.50	48.60	109.35
	NS	10.89	2.73	0.01	5.37	0.76	0.96	1.06	54.12	75.90
	A	31.97	1.34	0.00	42.37	0.14	0.11	0.08	31.26	107.27
	Т	11.21	0.00	0.00	448.08	1.82	20.83	1.46	23.52	506.91
	S	36.64	0.21	0.00	12.34	2.25	5.89	3.47	41.36	102.16
	R	171.71	8.49	0.00	59.95	45.19	49.06	59.88	164.07	558.34
	0	36.60	0.30	0.00	75.56	1.58	5.62	6.69	78.50	204.85
Process	CI		561	.48		IS	212.13			
emissions	LI		12	.61		CC	18.64			

Unit: Million tons

Terminal sub-sector		Coal	Cokin g produ	Crude oil	Refine d oil	Other petrol eum	Natura l gas	Heat	Electri city	Total
	EH	44.14	0.59	0.00	2.33	0.43	0.12	5.49	122.03	175.12
	PCN	23.37	17.31	2.08	6.13	158.50	12.90	27.43	19.44	267.16
	G	1.00	0.43	0.00	0.16	0.36	1.04	0.38	2.89	6.25
	BM	202.00	1004.3	0.01	3.20	2.07	6.13	23.92	168.03	1409.6
	NFM	25.22	17.40	0.02	4.68	5.73	2.98	10.01	112.11	178.14
	CI	231.87	78.97	2.49	11.76	127.20	50.38	74.23	159.53	736.44
	PPP	38.07	0.08	0.00	1.78	0.09	0.67	14.28	21.86	76.83
	FBT	50.39	0.52	0.00	5.15	0.28	1.83	12.47	27.75	98.39
	NMM	421.95	20.71	0.06	18.69	32.67	13.66	1.09	93.42	602.24
Energy-relat	TE	10.40	5.09	0.00	5.40	0.68	3.94	3.15	27.58	56.24
ed CO ₂	М	21.45	31.56	0.01	9.76	1.32	6.01	4.47	79.46	154.04
emissions	M- F	135.45	8.14	11.10	22.01	1.93	21.27	5.84	71.88	277.62
	WW	7.64	0.07	0.00	1.16	0.06	0.21	0.46	9.03	18.63
	С	14.48	0.14	0.00	25.62	46.32	0.28	0.55	18.31	105.69
	TL	30.31	0.41	0.00	4.20	0.17	0.54	18.97	52.21	106.82
	NS	9.71	2.86	0.00	3.73	0.64	1.28	1.01	57.00	76.22
	A	33.47	1.55	0.00	44.90	0.17	0.12	0.08	32.43	112.72
	Т	11.41	0.00	0.00	484.89	1.88	27.47	1.77	27.16	554.59
	S	41.32	0.53	0.00	13.03	2.14	7.27	3.82	48.12	116.24
	R	174.61	7.05	0.00	71.07	49.84	57.16	62.22	179.93	601.89
	0	39.10	0.34	0.00	85.20	1.70	5.87	7.22	88.14	227.58
Process	CI		585	.91		IS		232.71		
emissions	LI		13.	.22		CC	20.10			