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Abstract 

With the rapid growth of the carbon market, carbon price fluctuations are increasingly important for market 

participants. Carbon market risk directly affects the investor confidence and emission reduction results. In 

the present study, extreme value theory (EVT) is used to analyze risk exposure for carbon price and to 

measure the Value at Risk (VaR) for the carbon market. GARCH models are applied to establish a model of 

price volatility for the spot market and the futures market and to calculate dynamic VaR. Traditional VaR 

and VaR based on EVT are also compared. The results show that the downside risk is higher than the 

upside risk for the carbon market. Upside and downside risks are higher in the first phase (Jun 2005–Dec 

2007) than in the second phase (Feb 2008–Dec 2009) for both the spot and futures markets. Upside and 

downside risks are similar for the spot and futures markets during the same phase. The results also show 

that the EVT VaR is more effective than the traditional method, which can reduce the risks for market 

participants. Dynamic VaR based on GARCH and EVT can effectively measure the EU ETS market risk. 
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1 Introduction 

Greenhouse gas emission credits are now a scarce resource, so the international greenhouse gas 

emission trading market (carbon market) has developed rapidly. The European Union Emissions Trading 

Scheme (EU ETS) is the largest carbon market. The EU ETS trading volume increased from 322 million 

tons in 2005 to 6326 million tons in 2009, and the trading value increased from US$8.2 billion in 2005 to 

US$1184.74 billion in 2009 [1, 2]. 

EU ETS has opened new business opportunities for financial capital. The value with the rapid growth 

in EU ETS trading volumes, an increasing number of financial intermediaries and service providers are 

participating in the scheme, the carbon market is from general trading markets, as international politics and 

negotiations leads to great volatility, so that the market situation is becoming increasingly complex. 

Speculators are more concerned about short-term operation than long-term price trends, as evidenced by the 

rapid growth in turnover of futures contracts. Effective measurement of EU ETS market risk is of practical 

importance for market participants. EU ETS carbon price fluctuations will affect the confidence of market 

participants because of the uncertain politics and negotiations and thus the demand for emission reduction 

quotas. 

Carbon futures and options are traded in the EU ETS and have the properties of goods. The market 

mechanism has a great influence on carbon prices, carbon price will raise when the carbon allocation 

demand is strong, otherwise carbon price maybe down. Therefore, general measurement methods for 

financial market risk such as the Value at Risk (VaR) also apply to the carbon market. However, as a special 

commodity, carbon has its own traits that are differ from financial products. As a new market, the carbon 

market is impacted by external environmental instability (special event such as political factors and 

international climate negotiations, National Allocation Plan, temperature, among others) [3, 4]. The special 

events in the EU ETS may lead to an unusual loss or gain, For instance, in May 2006, the Czech Republic, 

France and Sweden made announcements showing their positions would be longer than expected. With the 

influx of speculative funds, the carbon price fell quickly, which made the market weak and.  

Description of the distribution of special events and modeling the risk of such events are important 

issues in market risk measurement. The main problem is modeling the distribution tail for the returns. For 

the EU ETS, the distribution tail may reflect special events that could cause great losses to EU ETS 



 

participants, which should be a major consideration in EU ETS risk management. Therefore, assuming that 

carbon price returns follow a certain type of distribution (commonly a normal distribution) can lead to 

biased results. In fact, because of the complexity of carbon price returns series, the middle of the returns 

distribution is inconsistent with the tail, which is unique. Thus, extreme value theory (EVT), which can 

measure extreme tail risk, was used to assess the carbon market risk.  

The carbon market risk has quite distinct implications for disparate market participants. For example, 

when carbon prices slump, carbon sellers incur losses. In this scenario, profits increase among purchasers; 

when the carbon price increases, the outcome is reversed. Therefore, in contrast to risk measurement in 

financial markets, both the downside and upside risks have to be considered in the carbon market.  

The remainder of the paper is organized as follows. Section 2 reviews the VaR measurement methods 

applied. Section 3 describes the source data. Empirical results are presented and discussed for static VaR, 

the GARCH model and dynamic VaR in Section 4. Conclusions are offered in Section 5. 

2 Literatures of EU ETS and carbon market risks 

With the greater focus on climate change actions and the rapid development of EU ETS impacts, great 

attention is being paid to carbon emissions [5-7] and the emerging carbon market [8]. To date, research on 

carbon market mechanisms and prices has focused on several areas, including the relationship between 

carbon, energy and stock prices. Benz and Trück [9] studied differences between emission allowances and 

classical stocks. Whereas the demand for and value of a stock is based on profit expectations for the 

underlying firm, the CO2 allowance price is determined by the expected market scarcity induced by current 

demand and supply in the carbon market. Mansanet-Bataller et al. [10] used econometric tools to analyze 

the relationship between carbon prices and oil, gas, coal and extreme weather phenomena. Alberola et al. 

[11] established a model including carbon price, energy prices and weather to analyze carbon price changes 

and the impact of EU ETS structural break points from 2005 to 2007. Oberndorfer [12] researched the 

impact of stock prices for power companies on EU ETS carbon prices. The results showed that carbon 

prices were positively correlated with stock prices, although this effect was not asymmetric. Benz and 

Trück [13] established Markov switching and AR-GARCH models to study returns on emission allowances. 

Wei et al. [14, 15] studied the relationships between carbon prices and energy prices. Feng et al. [16] 

examined carbon price volatility from a nonlinear dynamics point of view. 



 

Research has also focused on relationships between the industrial economy and other macro factors 

and the EU ETS. Lund [17] investigated the impact of EU ETS costs on energy-intensive manufacturing 

industries. Abadie and Chamorro [18] assessed installation of a carbon capture and storage (CCS) unit in a 

coal-fired power plant operating in a carbon-constrained environment in terms of the carbon price risk and 

the price of electricity output. Chevallier [19] used a GARCH model to explain the relationship between 

EU ETS carbon futures and macroeconomic factors. Analysis showed that the EU emissions allowances 

(EUAs), as a new type of commodity, were obviously influenced by electricity demand. Alberola et al. [20] 

confirmed the impact of variations in industrial production on EUA price changes in four countries 

(Germany, Spain Poland and the UK) and underlined the central role played by German power producers in 

the EU ETS. 

Other factors affect the price of carbon, including weather conditions (temperature, rainfall, wind 

speed), which affect power-generating capacity and the demand for emissions allowances, energy prices 

and macroeconomic trends. Benz and Trück [9] showed that an energy structural change would affect the 

supply of emissions allowances; the carbon emissions demand of power plant using natural gas was at least 

50% less than that of a coal-fired plant. Feng et al. [21] verified carbon market is temperature-sensitive. 

The allocation of EUAs has also been investigated. Buchner et al. [22] summarized the lessons and 

general principles to be learned from the allocation of allowances in the EU ETS, as well as global 

implications of the EU ETS. Haar and Haar [23] researched EU ETS policy-making uncertainties from a 

qualitative point of view, including the potential impact on economic development, the role of reductions in 

greenhouse gas emissions, and the benefits and costs of such reductions. They found that officially 

sponsored research and academic efforts in support of the EU ETS are surprisingly limited. Chevallier et al. 

[3] evaluated the impact of the 2006 compliance event on change in investor risk aversion in the European 

carbon market. The results show evidence of a dramatic change in the market perception of risk around the 

event. Parsons [24] compared the impact of banking and borrowing on carbon price fluctuations by 

comparing CO2 price fluctuations in the US and the EU ETS. Alberola and Chevallier [4] provided 

evidence that banking restrictions contributed to low EUA phase I prices. EUA spot prices did not meet 

equilibrium conditions in the intertemporal permits market. Other research focus on EUA price effecting on 

the value of corporations, Busch and Hoffmann [25] studied the financial markets perceive carbon 

constraints. 



 

Research on risk analysis in EU ETS is few, Chevallier [26] studied the risk premia in CO2 

allowances spot and futures prices. Chevallier [27] investigated the carbon price risk in the UK power 

sector. There has been no direct risk analysis for the EU ETS market, although EU ETS price fluctuations 

have been discussed. The aim of the present study was to explore risks for the EU ETS market via EVT. 

EVT has been applied in many fields where extreme values occur. Such fields range from finance [28, 

29] to insurance [30] and the oil market [31]. EVT provides a solid framework to formally study the 

behavior of extreme observations. However, price returns often show a clustering phenomenon and 

heteroscedasticity, so the GARCH model is used here to describe returns. A VaR model with GARCH is an 

accurate way to describe this phenomenon [32]. Marimoutou et al. [31] established a VaR model with EVT 

to study the oil market. Kuester et al. [33] compared the out-of-sample performance of existing methods 

and some new models for predicting Value-at-Risk. The results showed a heavy-tailed GARCH filter with 

an EVT-based approach, performed best overall. In the paper we model VaR using GRACH and EVT to 

identify the best measurement of carbon market risk. 

 

3 Methodology 

Let Ct denote the carbon price, so carbon price returns tr  are: 

 1100 (ln ln )t t tr C C −=  − . (1) 

3.1 VaR 

VaR is one of the most popular approaches for measuring market risk. VaR is defined as the maximum 

loss that will be incurred on a portfolio at a given confidence level over a specified period. Let F(x) be the 

distribution function for carbon price returns and p be the VaR confidence level. Then VaR can be 

represented as: 

 
1( ) ,   (1 )p pP X VaR p VaR F p− = = − . (2) 

The expected shortfall (ES) is used to assess conditional expected losses that exceed VaR [34, 35]. ES 

measures the average loss value when the loss exceeds VaR. If we define VaR as q, ES can be expressed as: 
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3.2 GARCH 

The clustering phenomenon and heteroscedasticity of carbon price returns volatility are obvious in the 

EU ETS; these can be described by the standard ARCH model and GARCH model [36, 37]. 

The GARCH model for the EU ETS can be expressed as follows: 
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where 
' '

1( , )t tx r r=  denotes carbon price returns, ht is conditional variance and t is a random variable 

that is independent and identically distributed and independent of ht. 

The current volatility of returns caused by previous increases and decreases in carbon price returns are 

quite asymmetric, which is called the leverage effect. TGARCH models are applied to address these issues1. 

The residual distribution is selected according to AIC, this will include a normal distribution and a 

generalized error distribution (GED) [40].  

3.3 Extreme Value Theory 

EVT was developed from Gumbel, Fréchet and Weibull distributions to yield a generalized extreme 

value distribution (GEV) as suggested by Jenkinson [41]. A more efficient approach to modeling extreme 

events is to attempt to focus not only the largest (maximum) events, but on all events greater than some 

large preset threshold. This is referred to as peaks over threshold (POT) modeling [31, 42].  

We define the excess distribution above the threshold u as the carbon price returns conditional 

probability Fu(y): 
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1 See Glosten et al.[38] and Zakoian [39] for an extensive discussion on this topic. 



 

where rt is the residual of the GARCH model. For a sufficiently high threshold u, the distribution function 

of the excess may be approximated by the generalized Pareto distribution (GPD) [43, 44]. The excess 

distribution Fu(y) converges to the GPD: 
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where [0, )y   for 0   and [0, ]y   −  for 0  . 
, ( )G y 
 is the GPD.   and  are the 

shape parameter and scale parameter for carbon price returns, respectively.   is an important parameter 

because it reflects the rate of disappearance of the distribution tail. 

According to Eq.(7), for a given carbon price return residual 
1{ ', , '}nr r  that meets the GPD, the 

maximum likelihood function is: 
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For a given threshold u, n is the sample size for carbon price residuals and Nu is the number of samples 

that exceed u. ( ')F r are represented by: 

 ( ') ( )(1 ( )) ( )uF r F y F u F u= − +  (8) 

and the function F(u) can be estimated non-parametrically using the empirical cumulative distribution 

function: 

 ˆ ( ) un N
F u

n

−
= . (9) 

After substituting Eqs. (7) and (10) into Eq.(9), we obtain the following estimate for ( ')tF r : 
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For ( )p F u , 
pVaR can be obtained as: 
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ES is expressed as: 
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3.4 Static VaR, dynamic VaR calculation and back testing 

On the basis of the VaR definition above, we can use Eqs.(12) and (13) to calculate the static VaR and 

ES. The dynamic VaR for the upside VaR can be calculated as follows: 

 , , , ,   ( 1,2)up

m t m t m m tVaR z h m= − = , (13) 

where m,t is the conditional expected return for carbon market m and zm, denotes the left α-quantile, which 

is the VaRp in Eq. (12). hm,t is the conditional variance series in market m, so hm,t >0. The downside VaR can 

be calculated as follows: 

 , , , ,   ( 1,2)down

m t m t m m tVaR z h m= − + = .  (14) 

After calculating the VaRs, for reliability it is necessary to back test whether the VaR model used has 

adequately estimated the real extreme risk or not. The failure rate is widely applied in studying the 

effectiveness of VaR models. The definition of failure rate is the proportion of the number of times the 

observations exceed the forecasted VaR to the number of all observations. The standard we use to judge the 

performance of VaR model is to assess the difference between the pre-specified VaR level and the failure 

rate. If the failure rate is very close to the pre-specified VaR level, we could conclude that the VaR model is 

specified very well [45]. According to Kupiec [46], we assume a confidence level 1–, sample size T and 

time to failure N days; then the failure rate is f=N/T. Kupiec [46] proposed the most suitable likelihood ratio 

test with the null hypothesis =f, for which the statistic is: 

 2ln (1 ) ( ) 2ln (1 ) ( )T N N T N NLR f f − −   = − − + −    . (15) 



 

Under the null hypothesis, 
2(1)LR   and the critical values at 95% and 99% confidence levels are 

3.84 and 6.64, respectively. According to the definition of a 2 distribution, if LR is greater than the 

corresponding critical value, then the null hypothesis should be rejected; in other words, it can be said that 

the VaR model is not adequate. 

4 Data 

The EU ETS, in its first phase from January 1 2005 to December 31 2007, regulates CO2 emissions 

from installations representing some 40% of EU emissions. The second phase is from 2008 according to 

Directive 2003/87/EC. The Bluenext carbon spot market and the European Climate Exchange (ECX) 

carbon futures market are analyzed here.2 Several major carbon price series are selected for the study: spot 

prices in the first phase (Spot1), futures for delivery in December 2007 (DEC07), spot prices in the second 

phase (Spot2), and futures for delivery in December 2009 (DEC09). 

First-phase data are from June 2005 to December 2007 and second-phase data are from February 2008 

to December 2009, and are quoted in EUR per ton. However, some prices are missing between spot and 

futures prices. We interpolate missing prices using average values. The carbon price trend is shown in Fig. 

1. 

Because the data include four price series, Spot1 is used as the sample in the modeling EVT process. 

The main example focuses on DEC09 in calculating the dynamic VaR. 

 

 

Fig. 1. Daily spot and futures prices for the first and second phases. 

                                                             
2 The first phase of the spot market was named Powernext. The NYSE acquired the Powernext environmental business 

on December 21, 2007, including Powernext Carbon and Powernext Weather, and renamed the new market Bluenext. 



 

Data source: Bluenext; ECX. 

 

5 Results Analysis and discussions 

5.1 Summary statistics for carbon price returns 

According to Eq.(1), carbon price returns were obtained and their trends are evident in Fig. 2. It should 

be noted that both spot prices (Fig. 2a,c) and futures prices (Fig. 2b,d) reveal the phenomenon of volatility 

clustering. The basic statistical characteristics of spot and futures price returns during the sample period are 

shown in Table 1. Overall, first phase fluctuations are large, and returns and volatility levels for spot and 

futures prices in the second phase are similar (the vertical range in Fig. 2a,c is much greater than that in Fig. 

2b,d). Compared with the standard normal distribution with skewness 0 and kurtosis 3, the skewness of 

both returns is negative, especially for DEC07. In other words, the returns do not follow the standard 

normal distribution. This was verified using the Jarque Bera (JB) test. A Ljung Box (LB) test confirmed 

that spot and futures returns both exhibit significant autocorrelation. In addition, both returns are stationary 

series according to an ADF unit root test. GARCH modeling for spot and futures returns is described in 

Section 4.3. 

 



 

 

Fig. 2. Daily spot and futures price returns (100%) for the first and second phases. 

 

Table1 

Summary statistics for spot and futures returns during the sample period 

Returns Mean SD Skewness Kurtosis JB test LB-Q(10) ADF 

Spot1 -0.9973 7.7354 -0.2956 12.4226 2369.50 

(0.0000) 

16.3730 

(0.0890) 

-6.6935 

(0.0000) 

DEC07 -1.2199 11.0586 -3.0604 71.6482 126272.00 

(0.0000) 

31.2950 

(0.0010) 

-4.7982 

(0.0000) 

Spot2 -0.0796 2.7572 -0.1389 4.3889 38.45 

(0.0000) 

32.5360 

(0.0000) 

-9.5304 

(0.0000) 

DEC09 -0.0911 2.7295 0.0146 4.6977 55.26 

(0.0000) 

26.9240 

(0.0030) 

-11.7053 

(0.0000) 

Note: Trend term is not included in the ADF test; p-values for corresponding null hypotheses are 

reported in parentheses. 

 

5.2 Static VaR analysis for carbon returns 

The returns were used to calculate the upside VaR. Returns were changed into a loss series to calculate 

the downside VaR. We first analyzed the EU ETS upside risk. According to Eq.(14), we obtained the mean 



 

excess for Spot1 returns. Eq.(7) defining the GPD and the maximum likelihood estimation of Eq.(8) yield 

the relevant GPD parameters. The results for Spot1 are shown in Fig. 3. 

 

 

Fig. 3. POT analysis results for Spot1. 

 

Choosing the threshold is very important. By increasing the number of observations for the series of 

maxima (a lower threshold), some observations from the centre of the distribution are introduced in the 

series, and the index of the tail is more precise but biased (i.e., there is less variance). By contrast, choosing 



 

a high threshold reduces bias but makes the estimator more volatile. As observed in Fig. 3, The first phase 

for spot process (Spot1) exhibits a Pareto distribution and the mean excess is positive, indicating a 

heavy-tailed distribution, which indicates the parameter should be 0  . The curve in Fig. 3 tends to an 

asymptotic line that fits the GPD distribution. Fig. 3b is the maximum likelihood estimate of the shape 

parameter at a confidence level of 95%. When the number of extreme points is between 60 and 100, the 

shape estimator is asymptotically stable. As observed in Fig. 3, the threshold of 4.9 is a reasonable choice. 

There are 61 extreme points in the up-tail for Spot1 price returns. 

After estimating the relevant GPD parameters, the results need to be tested. Tail parameters on fitting 

verify the accuracy of the threshold choice. The results are shown in Figs. 4 and 5. 

 

 

Fig. 4. Empirical distribution and QQ plot analysis of the Spot1 up-tail test. 

 

Fig. 5. Spot1 up-tail fitting under GPD. 
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The empirical distribution and QQ plot analysis reveal that the Spot1 up-tail test is acceptable 

according to the threshold selected (Fig. 4). Fig. 5 shows that the EVT model fits actual Spot1 returns well. 

Fitting of sample points on the up-tail falls on the GPD tail function, which is almost a straight line. There 

are fewer than six deviation points and the error rate is very low, indicating that the threshold meets the 

requirements. The results for Spot1 prices and other price returns are shown in Table 2. 

 

Table 2 

Estimation results for EVT models of carbon price returns 

 Spot1  DEC07  Spot2  DEC09  

 Up tail Down tail Up tail Down tail Up tail Down tail Up tail Down tail 

  4.9480 7.8988 5.1293 12.0953 3.7313 3.5784 3.1087 3.3829 

  0.0100 0.0626 0.3977 0.5365 0.1996 -0.3107 0.0586 -0.2609 

  7.6882 6.5130 5.3323 6.9767 1.2436 2.6353 1.7211 2.2730 

Nu 61 81 51 36 30 40 39 47 

 

In research on financial markets, it is common to analyze the overall risk situation while ignoring the 

risk of extreme events. Extreme events can lead to rapid price volatility, resulting in huge losses for traders. 

Therefore, use of EVT in market risk management is of great practical significance; in particular, VaR must 

be taken into account for bank risk management instruments under the Basel II Accord. Comparison of VaR 

and EVT results can reveal which method is better in describing carbon market risk. 

According to Eqs. (12) and (13), we obtained the upside VaR and upside ES for the threshold selected. 

The results are shown in Fig. 6. 

 



 

 

Fig. 6. Upside VaR and ES of EVT for Spot1 during 2005–2007. 

 

Fig. 6a shows that the VaR is 9.9482 at a confidence level of 95% and a threshold of 4.9480, as 

denoted by the vertical line. The dotted line denotes the 95% confidence level and curves represent the 

confidence interval range. The economic meaning of this result is that the possibility that a loss due to 

changes in the carbon spot price will not exceed 9.9482% was 95% in 2005–2007. Fig. 6b shows the VaR 

at a confidence level of 99%. Fig. 6c,d shows ES at confidence levels of 95% and 99%, respectively, as a 

measure of conditional expected losses in excess of VaR. 

The upside and downside VaRs and ESs based on EVT are shown in Table 3. We use the likelihood 



 

ratio LR test proposed by Kupiec [40] to back test VaR and the results for the traditional normal 

distribution are shown for comparison. 

 

Table 3 

Results for VaR model estimation and tests for carbon returns 

 Spot1  Dec07  Spot2  Dec09  

 Up tail 
Down 

tail 
Up tail 

Down 

tail 
Up tail 

Down 

tail 
Up tail 

Down 

tail 

VaR 

VaR95% 9.9482 14.1484 7.8800 12.9668 4.0706 4.9183 4.0318 4.8649 

ES95% 17.7646 21.5137 18.5495 29.0278 5.7090 6.6112 5.9175 6.3609 

VaR99% 22.5031 25.8394 22.3681 31.9953 6.5596 7.7286 7.0217 7.3440 

ES99% 30.4463 33.9854 42.6041 70.0818 8.8186 8.7554 9.1001 8.3271 

Back testing 

LR95% 0.0432 0.3182 0.0007 0.3182 0.1782 0.0452 0.0464 0.1782 

LR99% 1.0265 1.0265 0.0221 0.3214 0.0342 0.0827 0.0342 0.3927 

 

The results in Table 3 show that EVT models adequately estimate the VaRs for carbon price returns. 

With the exception of the upside and downside risks at confidence levels of 95% and 99%, all the LR 

statistics are less than the corresponding critical values. Therefore, according to the back testing method 

provided by Kupiec (1995), it can be argued that EVT models adequately estimate the VaRs for carbon 

price returns. Using the traditional method (see in Appendix A), estimates of upside and downside VaRs are 

not precise because the returns follow a non-normal distribution. Table 3 shows that the traditional method 

tends to overestimate the VaR at the 95% confidence level and underestimate the VaR at the 99% 

confidence level. Because the distribution is leptokurtic with a fat tail, EVT fits the returns better. 

Comparison reveals that the LR statistics for EVT are less than or equal to those for the traditional VaR, 

indicating that the static VaR estimate with EVT is sufficient for the sample data. For extreme events, ES is 

better than the VaR since it can estimate the actual market risk. If the market has an extreme event (subject 

to quota allocation effects, DEC07 prices fell in 2007), the gap between ES and VaR is large. The downside 

ES for DEC07 is 2.24-fold greater than that of VaR at the 95% confidence level and 2.19-fold that at the 99% 

confidence level, whereas for DEC09 the ES and VaR are very close at both confidence levels. Therefore, if 

there is extreme risk in the market, considering VaR alone will underestimate risk, whereas the ES can 

calculate the average loss above VaR expectations. The VaR combined with EVT can estimate the real 

market risk. 

As the returns series are time-varying, we combined the static method with the dynamic characteristics 



 

of the returns series to estimate the dynamic VaR. 

 

5.3 Dynamic VaR analysis for carbon price returns 

5.3.1 Estimation of GARCH-type models for carbon price returns 

To filter out the autocorrelation of carbon returns, the ARMA model was used. According to censored 

autocorrelation orders and graphs of partial autocorrelation functions, as well as the principle that the AIC 

value must be relatively minimum, an ARMA (1, 1) model was singled out after numerous trials. The 

carbon returns series exhibit significant volatility clustering, so an ARCH LM test was carried out for the 

residual series of the ARMA (1, 1) model. The results show that there are high-order ARCH effects, so 

GARCH models need to be adopted. The empirical results imply that there are significant TGARCH effects, 

so a TGARCH model was used. Considering the fat tail of the returns and the AIC value, some new 

distribution such as mixed-normal and mixed-stable was used instead of normal [47]. In the article, a GED 

distribution was introduced to depict the residuals of the GARCH model. 

The results for Spot1, DEC07, Spot2 and DEC09 are shown in Table 4. 

ARCH-LM tests results for residual series of the mean equation confirm that Spot1, Spot2 and DEC09 

exhibit no volatility clustering, in contrast to DEC07. 3  The Q2 statistics have large significance 

probabilities (both >10%), indicating that the goodness-of-fit of the models for returns is acceptable. Using 

the probability density function for GED, we calculated its 95% and 99% quantiles under the given 

parameters. The results in Table 4 show that the 95% quantile is close to that of the standard normal 

distribution (1.645), whereas the 99% quantile is greater than that of the standard normal distribution. 

 

Table 4 

Estimation results for GARCH and TGARCH models for carbon price returns 

Parameter Spot1(TGARCH-N) DEC07(TGARCH-N) Spot2(GARCH-GED) DEC09(GARCH-GED) 

Mean equation 

AR(1) — -0.3989 (0.0002) — — 

MA(1) 0.1253 (0.0034) 0.6481 (0.0001) 0.0901 (0.0618) 0.1225 (0.0122) 

Variance equation 

                                                             
3 For DEC07, we found that TGARCH-GED can eliminate volatility clustering, but the GARCH model does not meet the wide-smooth requirement, so 

we used a TGARCH-GED model. Choice of a suitable GARCH model for DEC07 should be investigated in future research. 



 

0  0.4569 (0.0000) 0.3046 (0.0000) 0.1753 (0.0785) 0.2750 (0.0679) 

1  0.1245 (0.0001) 0.1265 (0.0000) 0.0778 (0.0106) 0.1101 (0.0044) 

1  0.7449 (0.0000) 0.7791 (0.0000) 0.8996 (0.0000) 0.8525 (0.000) 

  0.3442 (0.0000) 0.3189 (0.0000) — — 

GED —— —— 1.5724(0.0000) 1.6894(0.0000) 

AIC 6.0594 6.1287 4.6935 4.6536 

Log likelihood -1927.9510  -1945.9880  -1074.5130 -1065.3260 

Quantiles 

Parameter 2.0000 2.0000 1.5724 1.6894 

95% 1.6449 1.6449 1.6524 1.6511 

99% 2.3263 2.3263 2.4684 2.4244 

 

 

Fig. 7. Conditional variances for carbon price returns. 

 

To compare the extent of volatility, Fig. 7 shows trends for the conditional variance for carbon returns. 

Volatility levels for Spot1 and DEC07 returns differ; volatility is greater for DEC07 than for Spot1 returns. 

Volatility levels for Spot2 and DEC09 returns are close, although the volatility for DEC09 returns is 

slightly greater on occasions. Returns for the second phase exhibit a trait whereby the greatest variance 



 

during periods with high volatility is more than 60-fold greater than the variance for the average volatility 

level. The variance for DEC07 is almost 1000-fold greater than that in the second phase. This type of 

large-scale volatility vibration demonstrates the extreme risk in the international carbon market. 

5.3.2 Dynamic VaR model estimation and test for carbon returns 

According to the GARCH models, we established EVT using residuals from the GARCH model and 

the results are shown in Table 5. 

 

Table 5 

EVT model estimation results for carbon price return residuals 

 Spot1  DEC07  Spot2  DEC09  

 Up tail Down tail Up tail Down tail Up tail Down tail Up tail Down tail 

  0.7055 1.3919 1.1160 1.4258 1.3134 1.1458 1.2177 1.2623 

  0.0367 0.1102 -0.0386 0.2163 -0.1530 -0.1987 -0.0555 -0.2497 

  0.5614 0.7139 0.7109 0.7379 0.4630 0.8478 0.3919 0.8874 

Nu 92 56 37 51 37 54 46 45 

VaR95% 1.3118 1.8064 1.2222 1.7915 1.5257 1.8114 1.4842 1.8107 

VaR99% 2.2795 3.1140 2.3252 3.3643 2.1399 2.7970 2.0468 2.8053 

 

Based on Eqs.(14) and (15), the upside and downside VaRs for carbon returns can be obtained at 

confidence levels of 95% and 99%. The results for DEC09 are shown in Figs. 8 and 9, with summary 

statistics in Table 6. 

 



 

 

Fig. 8. DEC09 returns and VaRs at a confidence level of 95%. 

 

 



 

Fig. 9. DEC09 returns and VaRs at a confidence level of 99%. 

 

According to the results, the dynamic VaR provides a better fit to carbon price changes. When the 

returns change a lot, VaR fluctuations are also violent. Figs. 8 and 9 show that the dynamic VaR based on 

GARCH-EVT provides a very good fit to actual changes in returns. 

The dynamic VaR based on GARCH and EVT adequately estimates the risk for carbon price returns. 

Using DEC09 as an example (Table 6), Figs. 8 and 9 reflect the failure time. The numbers of upside and 

downside failure times are 21 and 24 at a confidence level of 95%, and 6 and 5 at a confidence level of 

99%, respectively. The numbers of failure times are approximately 23 and 5 at confidence levels of 95% 

and 99%, respectively, so we can accept the results. According to Eq.(16), the upside and downside LR 

values are 0.1883 and 0.4552 at a confidence level of 95% and 0.3927 and 0.0342 at 99%, respectively, 

which are less than the critical value at the 95% (3.84) and 99% (6.64) levels. The dynamic VaR model here 

might underestimate the real DEC09 risk. As observed in Table 6, all the upside and downside LR values 

for Spot1, DEC07 and Spot2 are less than the critical value, confirming that the dynamic VaR model based 

on GARCH-EVT can estimate the real carbon market risk. In additional, all the LR values are very small, 

indicating that estimates of the upside and downside VaRs for carbon returns are very precise. 

 

Table 6 

Summary of dynamic VaRs for carbon price returns 

 
Conf. 

level 
Risk type Mean SD Max Min 

The 

number 

of 

failure 

times 

Rate of 

failure 

LR 

statistic 

Spot1 95% Upside 8.8878 7.5696 50.1547 1.8067 34 0.0533  0.1426  

  Downside -12.4341 10.5899 -2.5276 -70.1669 31 0.0486  0.0270  

 99% Upside 15.3279 13.0545 86.4967 3.1158 7 0.0094  0.0233  

  Downside -21.4348 18.2557 -4.3572 -120.9586 6 0.0094  0.0233  

          

DEC07 95% Upside 9.5544 11.9055 113.7213 1.5716 30 0.0471 0.1152 

  Downside -14.0048 17.4511 -2.3037 -166.6926 30 0.0471 0.1152 

 99% Upside 18.1769 22.6499 216.3515 2.9900 8 0.0126 0.3897 

  Downside -26.2999 32.7719 -4.3262 -313.0360 9 0.0141 0.9722 

          

Spot2 95% Upside 3.9936 1.1897 8.0645 1.9872 22 0.0478 0.0464 

  Downside -4.7414 1.4125 -2.3594 -9.5747 23 0.0478 0.0464 

 99% Upside 5.6013 1.6687 11.3111 2.7872 7 0.0152 1.0906 

  Downside -7.3213 2.1810 -3.6431  -14.7843  4 0.0087 0.0827 

          



 

DEC09 95% Upside 3.8094 1.2050 9.1981 1.7916 21 0.0457 0.1883 

  Downside -4.6474 1.4701 -2.1858 -11.2215 24 0.0522 0.0452 

 99% Upside 5.2996 1.6764 12.7963 2.4925 6 0.0130 0.3927 

  Downside -7.2002 2.2777 -3.3864 -17.3854 5 0.0109 0.0342 

 

As observed in Table 6, downside risks are higher than upside risks in the spot and futures markets in 

both the first and second phases. In the first phase, the average upside risk is 15.33% and the maximum loss 

value is 86.49%, whereas the mean downside risk is 21.43% and the maximum loss value is 120.96% at a 

confidence level of 99%. For the futures market, downside risks are also higher than the upside risks. 

Therefore, the loss for price decreases is greater than that for price increases for investments in the carbon 

market. 

Both upside and downside risks in the first phase are higher than in the second phase. The average 

upside risk for Spot1 is 21.43% and the maximum loss value is 120.96%, whereas the mean downside risk 

for Spot2 is 7.32% and the maximum loss value is 14.78% at a confidence level of 99%. In the futures 

market, the average upside risk for DEC07 is 26.30% and the maximum loss value is 313.03%, whereas the 

mean downside risk for DEC09 is 7.21% and the maximum loss value is 17.39% at a confidence level of 99% 

(Table 6). One of the reasons is the carbon price decreases from €20/ton to €0.02/ton, which leads to a large 

fluctuation in carbon price returns. Thus, investment in the market would be highly risky. 

The risk for the spot market is similar to that for the futures market in the same phase. The upside and 

downside risks for the spot market are similar to those for the futures market in the first and second phases 

at confidence levels of 95% and 99% (Table 6). 

 

5.3.3 Comparison of dynamic VaR models 

According to Eqs. (14) and (15), we calculated the upside and downside VaRs based on GARCH at 

confidence levels of 95% and 99%. The results are shown in Table 7. 

 

Table 7 

Summary of VaRs based on a GARCH model 



 

 
Conf. 

level 
Risk type Mean SD Max Min 

The 

number 

of 

failure 

times 

Rate of 

failure 

LR 

statistic 

          

Spot1 95% Upside 11.3224 9.6432 63.8937 2.3016 17 0.0266 8.7640 

  Downside -11.3224 9.6432 -2.3016 -63.8937 36 0.0564 0.5335 

 99% Upside 16.0128 13.6378 90.3616 3.2550 6 0.0094 0.0233 

  Downside -16.0128 13.6378 -3.2550 -90.3616 20 0.0313 18.7584 

          

DEC07 95% Upside 12.8588 16.0231 153.0520 2.1152 19 0.0298  6.3402 

  Downside -12.8588 16.0231 -2.1152 -153.0520 37 0.0581  0.8351 

 99% Upside 18.1855 22.6606 216.4539 2.9914 8 0.0126  0.3897 

  Downside -18.1855 22.6606 -2.9914 -216.4539 20 0.0314  18.8020 

          

Spot2 95% Upside 4.3252 1.2885 8.7342 2.1523 16 0.0348 2.4986 

  Downside -4.3252 1.2885 -2.1523 -8.7342 28 0.0609 1.0732 

 99% Upside 6.4611 1.9248 13.0474 3.2151 2 0.0043 1.8832 

  Downside -6.4611 1.9248 -3.2151 -13.0474 12 0.0261 8.3333 

          

DEC09 95% Upside 3.2151 1.3405 10.2324 1.9931 16 0.0348 2.4986 

  Downside -3.2151 1.3405 -1.9931 -10.2324 29 0.0630 1.5273 

 99% Upside 6.2225 1.9684 15.0248 2.9266 2 0.0043 1.8832 

  Downside -6.2225 1.9684 -2.9266 -15.0248 10 0.0217 4.7949 

 

The results reveal that, on the one hand, the VaR model under GARCH does not adequately measure 

the carbon market in the first phase. The critical 2 value at the 95% and 99% confidence level is 3.84 and 

6.64, respectively. LR values for Spot1 upside and downside VaR at the 95% confidence level are greater 

than the critical value. On the other hand, all the failure rates for the second phase in Table 7 are less than 

the critical values for confidence levels of 95% and 99%. Therefore, the VaR model can estimate market 

risk in the second phase. 

The dynamic VaR based on GARCH and EVT is more precise than the VaR based on GARCH for 

carbon spot and futures markets. Even if the upside and downside VaR models for carbon returns seem 

acceptable in terms of their LR value, their counterparts in Tables 6 and 7 seems more precise owing to 

smaller LR values. Consequently, we argue that overall it is more acceptable to use VaR models based on 

GARCH and EVT than those based only on GARCH. 

6 Conclusions 

Static VaR and dynamic VaR with EVT were used to measure risk in spot and futures carbon markets. 

A number of conclusions can be drawn from the results. 



 

(1) Volatility levels differ for Spot1 and DEC07 returns; volatility is greater for DEC07 

than for Spot1 returns. Volatility levels for Spot2 and DEC09 returns are close. The greatest 

variance during the second phase with high volatility is more than 60-fold greater than the 

variance for the average volatility level. The greatest variance for DEC07 is almost 1000-fold 

greater than that in the second phase. This type of large-scale volatility vibration demonstrates the 

extreme risk in the international carbon market. 

(2) GPD provides a suitable fit for the asymmetric distribution tail for price increases and 

decreases. In the descriptions of EU ETS returns with an asymptotic distribution tail, the EVT 

method yielded incremental estimation of the distribution tail for carbon price returns. The GPD 

distribution provided a good fit to the price returns distribution. The significance of this approach 

is obtaining the corresponding quantiles, which are basic parameters for market stabilization and 

risk management. The existing literature does not specifically describe the EU ETS distribution 

tail and assuming that the entire sample fits a normal distribution to describe the tail leads to 

biased results. 

(3) EVT models adequately estimated the VaRs for carbon price returns. For extreme 

events, ES is better than VaR because it can estimate the actual market risk. In both in the first and 

second phases, at confidence levels of 95% and 99%, static VaR based on EVT is more precise 

than the traditional VaR. The dynamic upside and downside VaRs based on GARCH-EVT are 

more precise than VaRs based on GARCH for carbon spot and futures markets. 

(4) As the quota allocation mechanism natured, the carbon market became more 

standardized from the first phase to the second phase. For both spot and futures markets, VaR was 

significantly lower in the second than in the first phase. The decrease in volatility shock was 

slower in the second than in the first phase. An asymmetric leverage effect is more obvious in the 

first than in the second phase. The results demonstrate that the carbon market is becoming 

standardized and market risk is reducing, enhancing confidence in carbon trading. A prerequisite 

for development of the carbon market is rational quota allocation, which will have an impact on 

confidence in long-term market participation. In the context of banking and borrowing, the issue 

of price freezes in the carbon market may have been solved, but the banking and borrowing are 

still worth discussing because of carbon price in relation to reduction effects. 



 

(5) Use of traditional risk assessment methods may lead to miscalculation of EU ETS 

market risk. Calculation of static and dynamic VaRs revealed that VaR based on EVT is better than 

traditional methods. Use of traditional risk management methods for the EU ETS could lead to 

significant errors in market risk estimates, because the EU ETS downside risk is greater than the 

upside risk. For EU ETS participants, appropriate use of EVT will enhance safe operation of the 

carbon fund. EVT does not require a distribution assumption for price returns, but lets the data fit 

a distribution tail, greatly reducing the model risk. EVT can effectively deal with the phenomenon 

of fat tails. 

The EU ETS market has specific features and EU ETS carbon prices are affected by the following 

factors. EU ETS participants can control their own supply of emission rights, so actual reductions 

in emissions by different companies and their reduction policies have an impact on carbon prices. 

Moreover, emission allowances have a clear time limit and the EU ETS does not allow banking 

across the phase, which directly led to a carbon price approaching zero at the end of the first phase. 

This is an important difference between the EU ETS and the common financial market. EU ETS 

prices are extremely sensitive to changes in policy: international climate negotiations impact on 

the future form of global emission reductions expected and national allocation plans have a direct 

impact on EU ETS trading trends. In addition, EU ETS and Clean Development Mechanism 

(CDM) project-based market connections will also affect the supply and demand for carbon 

allowances. These factors all affect EU ETS risk and EVT can help EU ETS participants to face 

the risk from carbon price fluctuation.  

(6) Regulators should be concerned about the effectiveness of market mechanisms in EU 

ETS policy. EU ETS regulators can develop and improve carbon market by considering the 

allowance allocation to avoid special events such as over allocation. Market participant are 

concerned about price changes especially in special events. Over-reaction phenomena, which lack 

objectivity, can reduce the effectiveness of stabilization policy mechanisms. EVT holds that the 

effect of policy on price depends not only on the speed at which information is transmitted, but 

also on the timing of policy implementation, investor sentiment and the price state. Therefore, a 

"good policy" may not lead to a "good result", either within the expected time or even at all. As 

mentioned above, the carbon price returns distribution, especially for price changes, is the basis of 



 

EU ETS price behavior and market risk. The results of this study provide an empirical foundation 

for the effect of EU ETS market policies. For future study, we suggest to study the dependencies 

and integration of spot and future market risk via EVT and copula functions. 

 

Appendix A Traditional VaR model estimation and tests for carbon returns 

 Spot1  Dec07  Spot2  Dec09  

 Up tail 
Down 

tail 
Up tail 

Down 

tail 
Up tail 

Down 

tail 
Up tail 

Down 

tail 

VaR 

VaR95% 11.7275 13.7221 16.9715 19.4114 4.4560 4.6152 4.3990 4.5812 

ES95% 18.5982 20.7726 44.7434 40.5201 6.4869 7.5640 6.0256 5.9732 

VaR99% 16.9953 18.9900 24.5024 26.9423 6.3337 6.4929 6.2578 6.4400 

ES99% 26.0713 26.6480 48.6788 59.6285 8.8940 8.0012 9.3835 7.9059 

Back testing 

LR95% 0.8179 0.5472 29.4950 10.0812 4.2839 8.0994 0.1883 1.5272 

LR99% 1.7806 8.5522 0.0221 0.3897 0.0342 2.0796 0.0342 2.0796 
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