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INDUSTRIAL ENERGY AND ENVIRONMENT EFFICIENCY OF CHINESE CITIES: AN 

ANALYSIS BASED ON RANGE-ADJUSTED MEASURE 

KE WANG§,*, XUEYING YU ¶ 

§Center for Energy and Environmental Policy Research and School of Management and Economics, Beijing Institute of 

Technology, 5 SouthZhongguancun Street, Beijing, 100081,China 

wangke03@yeah.net 
¶School of Economics and Management, Beihang University, 37 Xueyuan Road, Beijing, 100191, China 

Industrial energy and environment efficiency evaluation is essential in guiding national and environmental policy 

making, since the industrial sector is the largest energy consumer and major pollutants producer in China. This study 

utilizes the Range-Adjusted Measure (RAM) based models to evaluate the energy and environment efficiency of 

industrial sectors in 31 Chinese major cities. The empirical results show that eastern Chinese cities outperform their 

western counterparts in terms of industrial energy efficiency, and central Chinese cities outperform their eastern 

counterparts in terms of industrial environment efficiency. Under natural disposability, 23 cities exhibit decreasing 

returns to scale, and under managerial disposability, 18 cities exhibit increasing damages to scale. 

Keywords: Chinese city; energy and environment efficiency; industrial sector; Range-Adjusted Measure (RAM). 

1.   Introduction 

Energy and environment (E & E) efficiency evaluation has recently attracted increasing interests both 

in academic research and policy making in China, since it is considered as the very first step for energy 

conservation, pollutant reduction, and environment protection. These represents the extraordinary costs 

China incurs along with its miracle economic growth in the past three decades1-3. As a World Bank 

survey shows that the combined health and non-health costs of outdoor air and water pollution in China 

account to around $US100 billion per year, or about 5.8% of China’s GDP4. In a recent study 

conducted by Yale and Columbia University jointly, China was ranked 116 among all 132 countries 

and territories in terms of the Environmental Performance Index (EPI), which puts heavy weights on 

fossil fuel combustion and air and water pollutions5. Environment problems are threatening the 

sustainable development of this country. 

To sustain its development trajectory, China has invested great efforts in improving energy and 

environment efficiency and controlling environment pollution. It has put forward a strategic target of 

constructing an environment-friendly and resource-saving society, which was specified in the 11th and 

12th Five Year Plan (2006-2010 and 2011-2015): with environment protection as one of its highest 

priority policy, energy intensity (energy consumption per unit of GDP) should be reduced by 20% 

during 2006-2010 and 16% during 2011-2015, and these percentages are 10% and 8% respectively for 

total discharge of major pollutants (SO2, NOx, and COD etc.). In order to realize these targets of energy 

conservation and pollutant reduction, a series of policy tools, such as E & E regulations and laws, were 

proposed and implemented within the past single decade. Under such intensive policy intervention, it is 

necessary to comprehensively evaluate the E & E efficiency as a way to understand China’s current 

energy and environment management performance, estimate China’s potential in energy conversation 

and pollution reduction, and therefore, guide further policy making. 

This study aims to evaluate the industrial E & E efficiency in China’s major cities, since the 

industrial sector is the largest consumer of energy and the largest producer of more than half of the 

 
 



 

major pollutants. The study could also reveal different patterns of E & E efficiency in China as natural 

resources endowments and economic growth modes vary significantly among Chinese cities. 

Data Envelopment Analysis (DEA)6 has been generally recognized as a successful method to 

evaluate the efficiency of various decision-making unit (DMU)7,8, which is also specifically applied in 

E & E efficiency studies. Ref. 9 had made a good summarization of more than a hundred such 

applications. E & E efficiency evaluation also flourishes in China with quite extensive investigation in 

various regions and various sectors. Quite a few studies have contributed to the literatures. For instance, 

Ref. 10 proposed a total-factor energy efficiency index and evaluated the energy efficiency of 29 

Chinese administrative regions based on a DEA model. Ref. 11 investigated the energy efficiency and 

it changes in China’s iron and steel sectors through DEA-based Malmquist index. Ref. 13 utilized a 

DEA based index to calculate China’s regional energy efficiency and then investigated the regional 

energy efficiency determinants through a second-stage analysis based on an econometric model. 

Similar DEA based E & E efficiency evaluation researches of China also included Refs. 19-23 and 

many other articles. 

The E & E efficiency is usually recognized as a process that uses the lowest amount of energy 

inputs to create the greatest amount of desirable outputs (economics outputs), with the least undesirable 

outputs (negative environmental impacts). Considering undesirable outputs, DEA evaluation process 

can be classified into two categories9,16: conventional DEA with undesirable output transformation 

approaches and DEA assuming weak disposability. In the first category, undesirable outputs are either 

modified as negative desirable outputs12,14; or treated as inputs15,17,18. The second category revises the 

first one by matching undesirable outputs with desirable outputs under the assumption of weak 

disposability24,25 and using directional distance function techniques36,37. However, it is not sufficient to 

assume weak disposability in radial DEA models, since not all DMUs yield a unified abatement on 

input and/or output factors26. In addition, most existing studies have not measured the returns to scale 

(RTS) or the damages to scale (DTS)27-30. Their application is also limited with the methodological 

difficulty of combining measurement of operational efficiency through desirable output frontier and 

environmental efficiency from undesirable output frontier in a unified treatment. The Range-Adjusted 

Measure (RAM) model could help solve these problems as it provides two types of unification for 

DEA based environmental assessment within a unified DEA framework. 

Thus, this study sets up a RAM-DEA model to evaluate sector-specific E & E efficiency with 

consideration of returns to scale and damages to scale of them in 31 major Chinese cities. City and 

sector level data input represents another improvement beyond our current understanding of E & E 

efficiency in China, which is mostly based on general provincial level analysis and lacks of feasibility 

in more specific situations. 

The rest of this paper is organized as follows: Section 2 reviews typical RAM-DEA models for 

measurement of energy efficiency, environment efficiency and integrated efficiency, with consideration 

of RTS and DTS. Efficiency indices are also created in this section. Section 3 illustrates the E & E 

efficiency evaluation framework and computational flows of the RAM models. Section 4 discusses the 

empirical results and Section 5 concludes this paper. 

2.   RAM-DEA Models for E & E Efficiency Measurement 

According to Ref. 30, the strong and weak disposability concepts are proposed for radial DEA based E 

& E efficiency evaluation that a unified efficiency measure is incorporated and thus the assumption of 

weak disposability is necessary. However, for non-radial RAM-DEA based E & E efficiency 

evaluation, there is no necessity to distinguish between weak and strong disposability, since the 

incorporating of a unified efficiency measure in RAM-DEA is not necessary. In addition, within the 

radial DEA model, although the directional distance function can be given, the direction for inputs is 



 

 

not specified, which can be further defined under the RAM-DEA model, and thus several new concepts 

on disposability can be proposed from management and policy making point of view. These new 

concepts may provide deeper insight into E & E efficiency measures. Furthermore, RAM-DEA models 

can easily incorporate both energy efficiency and environment efficiency for each DMU in a unified 

efficiency evaluation structure. Therefore, in this study, the RAM-DEA models, first formally proposed 

in Ref. 31 and newly developed in Refs. 28 and 30, is utilized to measure the industrial energy and 

environment efficiency of Chinese major cities. 

2.1. Energy efficiency, integrated efficiency under natural disposability and returns to scale 

For evaluating the industrial E & E efficiency of Chinese cities, it is assumed that there are n cities 

(DMUs), and each of them (DMUj, j=1,…,n) consumes m kinds of inputs Xj=(x1j,…,xmj), including 

energy and non-energy inputs (e.g., labors and capitals), to produce s kinds of desirable outputs 

Gj=(g1j,…,gsj) (i.e. industrial added values) and f kinds of undesirable outputs Bj=(b1j,…,bfj) (e.g. air, 

water and solid waste pollutions). It is also assumed that all elements in the inputs and outputs vectors 

are positive. The RAM-DEA model for energy efficiency evaluation of a specific city (DMUk) is 

presented as following. 
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Where λj (j=1,…,n) are intensity variables that connect inputs of each DMUj with its outputs by a 

convex combination. 
x

id (i=1,…,m), 
g

rd (r=1,…,s) and 
b

fd  (f=1,…,h) are slack variables related to 

inputs, desirable outputs and undesirable outputs, respectively. Rs are ranges determined by the upper 

and lower bounds of inputs, desirable outpus and undesirable outputs. 1/[( )( )]x

i i iR m s h x x= + + − , 

1/[( )( )]g

r r rR m s h g g= + + − , and 1/[( )( )]b

f f fR m s h b b= + + − , in which max { }i j ijx x= , 

min { }i j ijx x= , max { }r j rjg g= , min { }r j rjg g= , max { }f j fjb b= , min { }f j fjb b= . 

In Model (2.1), beyond the traditional assumptions of strong and weak disposability, we take a third 

assumption: natural disposability, which is newly developed by (Refs. 28 and 30). It refers to such a 

condition that directional vector of inputs decrease along with decrease in the directional vector of 

undesirable outputs, but directional vector of desirable outputs may increase under this condition. This 

is referred to as natural disposability. It should be noticed that, in Model (2.1) and under natural 

disposability, the undesirable outputs are treated as free disposable inputs, which is essentially the same 

as the strong disposability assumption in the model of Ref. 38. Based on Model (2.1), we created an 

energy efficiency index and an integrated efficiency index under natural disposability, as shown below: 



 

Energy efficiency (ENEE) = ( )* *

1 1
1
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Integrated efficiency under natural disposability (IEND) = ( )* * *
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(2.3) 

The value of slack variables denoted by * here are determined through optimization of Model (2.1). 

The index of IEND incorporates inputs and both desirable and undesirable outputs, whereas the index 

of ENEE focuses on evaluating energy efficiency but ignores undesirable outputs (environment factors). 

The dual programming of Model (2.1) is conducted like this: 
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Where, vi(i=1,…,m), ur(r=1,…,s), wf(f=1,…,h), and σ are dual variables, with the ranges of the first 

three variables specified in (2.4) and σ unrestricted. We define efficient DMU as those having an IEND 

score of 1, and the type of returns to scale (RTS) for efficient DMU is determined by Model (2.5), 

which represents the marginal changes of a desirable output due to a unit increase in an input. 
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Where, 1/[( )( )]x

i i iR m s x x= + − and 1/[( )( )]g

r r rR m s g g= + −  are different from the ranges in 

Model (2.1) with the undesirable outputs excluded. For inefficient DMU, with IEND score less than 

one, the type of RTS is determined by Model (2.6) as follows. 
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all constraints in (2.1) and (2.4).
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Here, the calculations of 
x

iR , 
g

rR , and 
b

fR  are same as those in Model (2.1). Based on the 

optimized upper bounds  
 and 


, and lower bound 


 and 


 obtained from Model (2.5) and (2.6), 

respectively, the type of RTS of a specific DMU is determined in this way: 

( ) ( ) 0        DMU is under increasing RTS. 

( ) 0 ( )        DMU is under constant RTS. 



 

 

( ) ( ) 0        DMU is under decreasing RTS. 

2.2. Environment efficiency, integrated efficiency under managerial disposability and damages 

to scale 

Similar to models for energy efficiency evaluation, the RAM-DEA model for environment efficiency 

evaluation of a specific city (DMUk) is proposed in this section. 
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    (2.7) 

Definitions of all variables and parameters in Model (2.7) are the same as those in Model (2.1), 

with the only difference in the sign of slack 
x

id . The difference results from the fact that we adopt a 

fourth assumption about disposability: managerial disposability, which means that a DMU 

simultaneously increases its directional vector of inputs but decreases its directional vector of 

undesirable outputs,  so as to increase the directional vector of desirable outputs. This is just opposite to 

natural disposability. Under this assumption, undesirable outputs take the place of inputs in 

mathematical calculation of Model (2.7), and the original inputs are placed as outputs. Based on Model 

(2.7), an environment efficiency index and an integrated efficiency index under managerial 

disposability can be evaluated as follows. 

Environment efficiency (ENVE) = ( )* *
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Integrated efficiency under managerial disposability (IEMD) = 

( )* * *
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Similarly, the slacks denoted by * are determined by optimizing Model (2.7). The index of IEMD 

incorporates inputs and both desirable and undesirable outputs, but the index of ENVE ignores 

desirable outputs. In other words, ENVE only evaluates environment efficiency without considering 

economic factors. Although calculation formulas of IEMD in Model (2.7) and IEND in Model (2.1) are 

quite similar, they are essentially different, as the two indexes are derived from different optimization 

processes.  Dual programming of Model (2.7) is conducted as follows: 
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Here, the definitions of all variables and parameters of Model (2.10) are quite similar with that of 

Model (2.4), with the only difference in the sign of their first items of the objective and the constraint. 

In Model (2.10), an efficient DMU is defined as that with an IEMD score of one, and its type of 

damages to scale (DTS) can be determined by Model (2.11) as follows. DTS, which corresponds to the 

concept of RTS in Model (2.4), represents the marginal change in undesirable output with increase in 

input. 
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Where, 1/[( )( )]x

i i iR m h x x= + −  and 1/[( )( )]b

f f fR m h b b= + − , and the desirable outputs are 

excluded. For inefficient DMU, with an IEMD score less than one, the type of DTS is determined by 

Model (2.12) as follows: 
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Calculation of the three ranges of 
x

iR , 
g

rR , and 
b

fR  is the same as that in Model (2.7). Similarly, 

based on the optimized upper bounds  
 and  

 derived from Model (2.11), and the optimized lower 

bound 

 and 


 from Model(2.12),  DTS of a specific DMU can be determined as follows: 

( ) ( ) 0        DMU is under decreasing DTS. 

( ) 0 ( )        DMU is under constant DTS. 

( ) ( ) 0          DMU is under increasing DTS. 

3.   The Framework for E & E Efficiency Evaluation 

Figure 1 illustrates the framework for evaluating integrated efficiency, energy efficiency, and 

environment efficiency. It also explains the process through which RTS and DTS are determined. 

Computational details are also specified in the figure. 
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Fig.1. The framework for energy and environment efficiency evaluation. 

For evaluation of the integrated efficiency of DMUk under natural disposability, we first determine 

all the slacks associated with inputs and outputs by solving Model (2.1). Then, as measurements of 

integrated and energy efficiency, the indices of IEND and ENEE are calulated. Based on the value of 

IEND, a DMUk is determined as either the efficient or inefficient. If it is efficient, the lower and upper 

bounds of objective value are obtained through solving Model (2.5), otherwise through solving Model 

(2.6). The type of RTS of a DMUk is determined by checking the values of its lower and upper bounds. 

The process of evaluation under managerial disposability is very similarly, with only the substitution of 

Model (2.1) with Model (2.7), Model (2.5) with Model (2.11), Model (2.6) with Model (2.12), and RTS 

with DTS. 

4.   Data and Variables 

This study takes the capital cities of all the 31 provinces, autonomous regions, and municipalities in 

mainland China as sample. We focused on their industrial sector and collected data about industrial 



 

energy consumption, labor input, fixed assets, added value, and pollutions from gas emission, waste 

water, and solid wastes, which are summarized in Table 1. 

Table 1. Descriptive statistics of input and output factors. 

Inputs and 

outputs 

Input 
 Desirable 

output 

 
Undesirable output 

Total industrial 

energy 

consumption (I1) 

Number of 

industrial 

labor (I2) 

Net value of 

industrial fixed 

assets (I3) 

Industrial 

added 

value (G) 

Total 

industrial 

waste gas 

emission 

(B1) 

Total 

industrial 

waste water 

discharged 

(B2) 

Total 

industrial 

solid wastes 

discharged 

(B3) 

Statistics 

\Units 

Million tonnes of 

coal equivalent 

Thousand 

employees 
Billion CNY 

Billion 

CNY 
Billion m³ 

Million 

tonnes 

Million 

tonnes 

Average 17.79 609.95 146.45 123.06 276.71 146.15 8.62 

Std. dev. 12.93 604.80 154.54 118.94 286.67 187.63 7.20 

Max. 60.35 2898.90 743.82 515.20 1258.70 799.59 25.52 

Min. 0.11 11.19 7.63 1.56 0.70 4.75 0.04 

Source: China statistical yearbook (2010)33, China energy statistical yearbook (2010)34, and China statistical Yearbook on 

Environment (2010)35. 

 

The input variables are (i) Total energy consumption includes consumption of coal, oil, natural gas, 

and other energy. They are all converted to the standard coal equivalent (million tonnes of coal 

equivalent). Here, coal equivalent is a reference unit for the energetic evaluation of various energy 

carriers. According to the conversion factors from energy physical unit to calorific value provided in 

China’s national standard: General principles for calculation of total production energy consumption32, 

1 kilogram coal equivalent corresponds to a value specified as 29.3 million joules (or 7,000 

kilocalories). (ii) Number of employees in industrial sector (thousand people). (iii) Net value of fixed 

assets in industrial sector (billion Chinese Yuan, CNY). The desirable output variable is industrial 

added value (billion CNY). Data of the net value of fixed assets and industrial added value are both in 

current year’s price. The undesirable output variables are three major industrial wastes: (i) waste gas 

(billion cubic meters), (ii) waste water (million tonnes), and (iii) solid wastes (million tonnes). All data 

of these seven variables are obtained from China Statistical Yearbook33, China Energy Statistical 

Yearbook34, and China statistical Yearbook on Environment35. 

Table 2 lists the correlations between inputs, desirable outputs, and undesirable outputs. All 

correlations between output and input variables are significant, with just two exceptional pairs: 

industrial energy consumption and industrial added value, as well as that between industrial energy 

consumption and industrial waste water. This is considered acceptable in this efficiency evaluation 

study, as production of desirable output of industrial sector is not just consumes energy, but also other 

inputs, such as labor and capital. In addition, compared with industrial waste water discharged, the 

relationship between industrial energy consumption and industrial waste gas emission or solid waste 

should be much tighter. The positive correlations between input and output variables also satisfy the 

RAM method requirement that outputs increase along with inputs. Transformation of undesirable 

outputs is conducted under the instruction from Ref. 38. 

Usually, the number of observations under evaluation (DMU) should be more than three times of 

the number of input and output variables so as to construct an appropriate efficiency frontier. In this 

study, we have 31 DMUs, three times more than the total number of input and output variables, so the 

sample is sufficiently large for effective evaluation. 

 

Table 2 Correlation matrix for inputs and outputs. 

Output 
Input 

I1 I2 I3 

G1 0.366 0.946* 0.948* 



 

 

B1 0.559* 0.771* 0.734* 

B2 0.265 0.654* 0.491* 

B3 0.722* 0.511* 0.522* 

*:representsthesignificanceat0.01significantlevel. 

 

5.   Empirical Results 

5.1. Industrial energy and environment efficiency evaluation 

E & E efficiencies in 31 Chinese cities’ industrial sectors are presented in Table 3, with the types of 

RTS and DTS also specified. The first and second columns show the identification of DMUs and name 

of the cities. The third and fourth columns indicate each city’s industrial energy efficiency and 

integrated efficiency under natural disposability, which are measured by Model (2.1) and related 

indices ENEE and IEND. 

[Insert Table 3 here] 

Among the 31 capitals, 11 cities, including Tianjin, Shenyang, Changchun, Shanghai, Hefei, Jinan, 

Zhengzhou, Changsha, Guangzhou, Haikou, and Lhasa, exhibit efficient both in energy efficiency and 

integrated efficiency under natural disposability (shown in Fig.2), which indicates that (i) without 

considering pollution, these cities perform efficiently in energy utilization and industrial production; 

and (ii) under the assumption of natural disposability, these cities perform efficiently both on industrial 

energy utilization and environment protection. 

On the other extreme, Taiyuan performs worst in terms of its efficiency in industrial energy 

utilization, with an ENEE score lower than 0.85. The performance of Wuhan, Chongqing, Beijing, 

Urumchi, Hangzhou, and Shijiazhuang are similarly poor, with ENEE scores lower than 0.95. From a 

geographic perspective, cities in east China tend to have the highest industrial energy efficiency 

(E(ENEE)=0.978), followed by western cities  (E(ENEE)=0.967), and finally central cities 

(E(ENEE)=0.965). In addition, variance in energy efficiency is significant among central Chinese cities 

(CV(ENEE)= 0.06), and less dismissed among western cities (CV(ENEE)=0.02). 
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Fig.2. Industrial energy efficiency for 31 Chinese cities. 

 

The eighth and ninth columns of Table 3 indicate the industrial environment efficiency and 

integrated efficiency under managerial disposability for each Chinese city, which are measured by 

Model (2.7) and related indices ENVE and IEMD. 

In terms of environment efficiency and integrated efficiency under managerial dsiposability, about 

half of the cities, including Beijing, Tianjin, Taiyuan, Shenyang, Shanghai, Hefei, Fuzhou, Jinan, 

Wuhan, Changsha, Guangzhou, Haikou, Lhasa, Yinchuan, and Urumchi achieved efficiency, which 

indicates that (i) without considering industrial production, these cities all perform efficiently in energy 

utilization and pollutants emission; and (ii) under the assumption of managerial disposability, these 

cities perform efficiently both on industrial energy utilization and environment protection. 

The other half of the cities performed inefficiently, with Chongqing as the worst one (shown in 

Fig.3). Its ENVE score is even lower than 0.75. Nanjing, Hangzhou, Kunming, and Shijiazhuang did 

relatively better, with ENVE scores between 0.80 and 0.90, but still inefficiently. Interestingly, 

although the central Chinese cities perform worst in terms of energy efficiency, they constitute the most 

environmentally efficient region in terms of environment efficiency (E(ENVE)=0.984), with eastern 

China following (E(ENVE)=0.963) and western China coming at last (E(ENVE)=0.942). The 

phenomenon repeat here that the region that was least efficient in environmental conservation also has 

the largest variance in terms of environmental efficiency (CV(ENVE)western=0.08), and the best 

performing one had the lowest variance (CV(ENVE)central=0.02). 

 

Fig.3. Industrial environment efficiency for 31 Chinese cities. 

 

Combining the evaluation of both energy and environment efficiency, nine cities are efficient both 

on industrial energy efficiency and industrial environment efficiency, including Tianjin, Shenyang, 

Shanghai, Hefei, Jinan, Changsha, Guangzhou, Haikou, and Lhasa. Six of them are located in eastern 

China, two (Hefei and Changsha) in central China, and one (Lhasa) in western China. These nine cities 

all reached the desirable and undesirable output frontiers, and perform efficiently under both the natural 

and the managerial disposability assumptions. Therefore, they could serve as the benchmarks for 

gauging other inefficient Chinese cities to further promote their E & E efficiency in their industrial 

sectors. 

Fig.4 compares the integrated efficiency under natural disposability and managerial disposability 

for each of the 31 Chinese cities. The radar chart shows that the integrated efficiency under managerial 
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disposability appears more balanced than that under natural disposability. This indicates that the 

integrated efficiency difference among China’s 31 cities is more significant from the perspective of 

natural disposability. Taiyuan has the largest gap between the two integrated efficiencies, followed by 

Wuhan, Beijing and Urumchi. For the four cases, ENVE is always higher than ENEE, which implies 

that it is more effective for these cities to promote integrated efficiency by naturally decreasing 

industrial energy consumptions instead of relying on managerial efforts. In contrast, cities of 

Zhengzhou, Nanning, Nanjing and Chengdu performed better when evaluated with the criterion of 

integrated efficiencies under natural disposability than that under managerial disposability, which 

means that there is more potential in these cities in improving integrated efficiency through 

management promotion and technology innovation, rather than through naturally decreasing energy 

consumption. 

 

Fig.4. Integrated efficiency under natural and managerial disposability for 31 Chinese cities. 

 

Our study also indicates significant potential for Chinese cities to improve their energy use 

efficiency. As also illustrated in Table 3, the average integrated efficiency under natural disposability 

for all sample cities is 0.911, which means they could potentially raise the E & E efficiency by 8.9% in 

general, if their industrial sectors operate on the desirable output efficiency frontier. In addition, the 

average integrated efficiency under managerial disposability is 0.947, indicating that if all the 

inefficient cities place their industrial operation on the undesirable output efficiency frontier, the E & E 

efficiency could be increased by 5.3%. 

5.2. Measurement of returns to scale and damages to scale 

Table 3 also summarizes the types of RTS of industrial sectors of 31 China’s cities. Three different 

types of increasing, constant and decreasing RTS are indicated in the seventh column of Table 3. Under 

the assumption of natural disposability, most cities (23 of them) have decreasing RTS in their industrial 

sectors, such as Beijing, Wuhan, and Chongqing. Another seven cities exhibit constant RTS. Only in 

Lhasa, RTS in the industrial sector is decreasing (Table 3). 
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Decreasing RTS under natural disposability implies that the marginal benefit, as measured by 

industrial added value, from increasing inputs of energy, labor, and physical capital actually decreases. 

Thus, for the 23 cities with decreasing RTS, further pursuing a large size industrial sector is not 

recommended. It will not improve their industrial energy efficiency any more. In contrast, increasing 

RTS under natural disposability indicates increasing marginal benefit from the industrial inputs. 

Therefore, Lhasa should be particularly promoted to increases the size of its industrial sector, so as to 

enhance its industrial energy efficiency. For cities with constant RTS, it is better for them to maintain 

their current size of industrial sector so as to keep their energy efficiency, or alternatively, they should 

utilize technology innovation so as to further increase their industrial energy efficiency. 

In addition, three types (increasing, decreasing and constant) of DTS of industrial sectors of 31 

China’s cities are also summarized in the last column of Table 3. Under the assumption of managerial 

disposability, 18 out of the 31 sample cities exhibit increasing DTS, and five with decreasing DTS, 

another eight with constant DTS (Table 3). 

Increasing DTS under managerial disposability indicates that the marginal environmental cost, as 

measured by the amount of discharge of waste water, waste gas, and solid wastes increases with the 

input of energy, labor, and physical capital. Thus,  the 18 cities with increasing DTS are not 

recommended to simply extend their industrial production scales, as that will result in over 

proportionally increase in pollutant discharge, as well as more environment damages. Alternatively, 

these cities may adopt the innovative technologies in energy conservation and pollutants capture, so as 

to simultaneously upgrade their industrial production scales and enhance environment efficiency. In 

contrast to the increasing DTS, decreasing DTS under managerial disposability implies decreasing 

marginal environmental cost with inputs. Hence, there leave room for Hohhot, Hangzhou, Nanchang, 

Lhasa, and Lanzhou to enlarge their industrial sectors as a way to improve their environment 

efficiencies, although this is not recommended either. Extending industrial production would anyway 

cause more pollution, even at a slower rate. Constant DTS under managerial disposability indicates that 

constant marginal environmental cost. Thus, for the remaining eight cities, it is not recommended, but 

acceptable, that they can maintain the current size of industrial production to keep environment 

efficiency. Certainly, they may also adopt environmental and energy technology innovation or promote 

energy management to further promote industrial environment efficiency. 

6.   Conclusions 

In this paper, we applied the RAM method to evaluate energy efficiency, environment efficiency, and 

integrated efficiency, under the assumptions of both natural and managerial disposability assumptions, 

for the industrial sectors of 31 Chinese major cities. 

The evaluation results show that: (i) 11 cities exhibit industrial energy efficiency and 15 cities 

maintain industrial environment efficiency in 2009; (ii) eastern Chinese cities perform best in terms of 

industrial energy efficiency, followed by western cities, and then central cities; oppositely, central cities 

perform best in terms of industrial environment efficiency, followed by eastern cities, and then western 

cities; (iii) central Chinese cities incur great variance in their industrial energy efficiency performance, 

and the industrial environment efficiency performance varies most among western Chinese cities; (iv) 

Under natural disposability assumption, most cities exhibit decreasing RTS, whereas under managerial 

disposability assumption, most cities exhibit increasing DTS. To promote E & E efficiency, our study 

present the prior potential of applying innovative environmental and energy technologies, instead of 

simply extending or shrinking the size of industrial sectors, in Chinese cities.  
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Table 3.Energy and environment efficiency of industrial sector and type of returns to scale and damages to scale for China’s 31 cities. 

DMU 

No. 
Area City 

Model (2.1) & (2.4)  Model (2.5) & (2.6)  Model (2.7) & (2.10)  Model (2.11) & (2.12) 

ENEE IEND 
Upper bound 

 ( ) 

Lower bound 

 ( ) RTS ENVE IEMD 
Upper bound 

 ( ) 

Lower bound 
 ( ) DTS 

1 E Beijing 0.9273 0.8687  0.1931 0.1931 D  1 1  0.1528 -0.0065 C 

2 E Tianjin 1 1  0.4813 -0.0142 C  1 1  1.4724 0.0760 I 

3 E Shijiazhuang 0.9473 0.8136  0.2026 0.2026 D  0.8968 0.8277  0.0409 0.0409 I 

4 C Taiyuan 0.8461 0.6742  0.1799 0.1799 D  1 1  0.0685 -0.0014 C 

5 W Hohhot 0.9649 0.9127  0.0588 0.0588 D  0.9794 0.9725  -0.0156 -0.0156 D 

6 E Shenyang 1 1  0.0614 0.0205 D  1 1  0.8465 -0.0077 C 

7 C Changchun 1 1  0.2195 -0.1216 C  0.9920 0.9912  0.0138 0.0138 I 

8 C Harbin 0.9595 0.8757  0.0938 0.0938 D  0.9468 0.9340  0.0002 0.0002 I 

9 E Shanghai 1 1  0.4813 0.0074 D  1 1  0.1854 0.1410 I 

10 E Nanjing 0.9766 0.8124  0.2452 0.2452 D  0.8354 0.7697  0.1083 0.1083 I 

11 E Hangzhou 0.9403 0.7711  0.2660 0.2660 D  0.8557 0.8245  -0.0117 -0.0117 D 

12 C Hefei 1 1  0.0105 -0.0316 C  1 1  0.0152 -0.0020 C 

13 E Fuzhou 0.9644 0.9291  0.0515 0.0515 D  1 1  0.1043 -0.0045 C 

14 C Nanchang 0.9928 0.9716  0.0319 0.0319 D  0.9780 0.9711  -0.0130 -0.0130 D 

15 E Jinan 1 1  0.2195 -0.0477 C  1 1  0.0198 0.0198 I 

16 C Zhengzhou 1 1  0.2013 -0.0477 C  0.9578 0.9320  0.0352 0.0352 I 

17 C Wuhan 0.9186 0.8068  0.2042 0.2042 D  1 1  0.9260 0.9062 I 

18 C Changsha 1 1  0.2013 -0.0103 C  1 1  0.0665 -0.0077 C 

19 E Guangzhou 1 1  0.2013 0.1926 D  1 1  0.5339 0.0253 I 

20 W Nanning 0.9903 0.9425  0.0529 0.0529 D  0.9297 0.8977  0.0342 0.0342 I 

21 E Haikou 1 1  0.0074 -0.1216 C  1 1  0.0030 -0.0015 C 

22 W Chongqing 0.9197 0.5873  0.4618 0.4618 D  0.7402 0.6806  0.1284 0.1284 I 

23 W Chengdu 0.9891 0.9266  0.1444 0.1444 D  0.9209 0.8936  0.0020 0.0020 I 

24 W Guiyang 0.9746 0.9092  0.0701 0.0701 D  0.9503 0.9355  0.0002 0.0002 I 

25 W Kunming 0.9617 0.8164  0.1545 0.1545 D  0.8786 0.8575  0.0015 0.0015 I 

26 W Lhasa 1 1  -0.0030 -0.0033 I  1 1  -0.0073 -0.0073 D 

27 W Xi’an 0.9742 0.9398  0.0471 0.0471 D  0.9772 0.9683  0.0274 0.0274 I 

28 W Lanzhou 0.9584 0.9079  0.0554 0.0554 D  0.9777 0.9615  -0.0131 -0.0131 D 

29 W Xining 0.9768 0.9382  0.0360 0.0360 D  0.9559 0.9295  0.0418 0.0418 I 

30 W Yinchuan 0.9602 0.9395  0.0241 0.0241 D  1 1  0.3281 0.0030 I 

31 W Urumchi 0.9334 0.8925  0.0521 0.0521 D  1 1  0.0685 -0.0021 C 

- Eastern 
Mean 0.9778 0.9268  - - -  0.9625 0.9475  - - - 

Std. dev. 0.0283 0.0926  - - -  0.0657 0.0912  - - - 

- Central 
Mean 0.9646 0.9160  - - -  0.9843 0.9785  - - - 

Std. dev. 0.0560 0.1215  - - -  0.0214 0.0298  - - - 

- Western 
Mean 0.9669 0.8927  - - -  0.9425 0.9247  - - - 

Std. dev. 0.0231 0.1051  - - -  0.0736 0.0897  - - - 

- China 
Mean 0.9702  0.9108  - - -  0.9604  0.9467   - - - 

Std. dev. 0.0351  0.1029   - - -  0.0618  0.0799   - - - 

Note: E, C, and W respectively indicate east, central and west China cities; D, C, and I respectively indicate decreasing, constant, and increasing returns or damages to scale. 


