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c Center for Energy & Environmental Policy Research, Beijing Institute of Technology, Beijing 100081, 

China 

Abstract:  

Energy technology innovation plays a crucial role in reducing carbon emissions. This 

paper investigates whether there is relationship between energy technology patents and CO2 

emissions of 30 provinces in mainland China during 1997 - 2008. Gross Domestic Product 

(GDP) is included in the study due to its impact on CO2 emissions and energy technology 

innovation, thus avoiding the problem of omitted variable bias. Furthermore, we investigate 

three cross-regional groups, namely eastern, central and western China. The results show that 

domestic patents for fossil-fueled technologies have no significant effect on CO2 emissions 

reduction; however, domestic patents for carbon-free energy technologies appear to play an 

important role in reducing CO2 emissions, which is significant in eastern China, but is not 

significant in central, western, and national level of China. The results of this study enrich 

energy technology innovation theories and provide some implications for energy technology 

policy making. 

Key words: energy technology patents, CO2 emissions, dynamic panel data approach 

1. Introduction 

Under the stress of climate change and resource crises, cutting down greenhouse gas 
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(GHG) emissions and slowing down the process of global warming have received increasing 

concern worldwide. Along with the growing energy consumption and CO2 emissions, it is 

crucial for China to enhance energy security and reduce climate change. In 2008, China 

contributes 8.56 percent to the global GDP while accounts for 17.29 percent of the global 

energy consumption (CESY, 2009). At present China’s economy grows rapidly, and is likely 

to keep its growth in the future. In this situation, China’s CO2 emissions will reach about 15.1 

billion tons in 2020, and China will probably face 4.7 billion tons of CO2 emissions gap in 

2020 if none action is taken (Liu et al., 2008). Moreover, Chinese government has made a 

commitment in 2009 Copenhagen Climate Change Conference to reduce the intensity of CO2 

emissions per unit of GDP in 2020 by 40 to 45 percent compared with the level of 2005. 

Therefore, Chinese government is under great pressure to reduce CO2 emissions. 

Many factors determine CO2 emissions, including economic scale, population, industrial 

structure, energy consumption structure, energy efficiency, energy intensity and the level of 

technology and management (Kaya, 1990; Wang and Huang, 2008; Xu et al., 2006). The 

increase of CO2 emissions in China is driven by growing economy, coal-dominated energy 

structure, rising level of industrialization, and population growth (Xu et al., 2006; Wei and 

Yang, 2010). After scrutinizing the literature, we find that the role of energy technology in 

reducing emissions remains controversial. Some studies implied that energy technology 

innovation played a crucial role in reducing CO2 emissions (Sagar and Holdren, 2002; Sun et 

al., 2008). Researchers also found that clean technology had a negative effect on CO2 

emissions in China (Wei and Yang, 2010; Wu et al., 2005). However, other scholars reported 

that the improvement of energy efficiency in China had no significant effect on reducing CO2 

emissions, and clean technology did not play its role of reducing CO2 emissions (Hu and 



 

Huang, 2008; Xu et al., 2006). These inconsistent results suggest that further research is 

needed to examine the impact of energy technology on CO2 emissions. In this paper, we will 

address this issue from the perspective of energy technology patents. 

Patent counts are commonly used to measure the output of innovation activities 

(Dechezlepretre et al., 2010; Popp, 2006; Popp et al., 2009). Energy technology patents 

directly reflect the performance of energy technology innovation activities and the 

development of energy technologies. The increase of patent counts in energy and 

environmental sectors implies the improvement of energy technology innovation ability (Liu 

and Sun, 2008). However, careful scrutiny of the literature on the main factors determining 

CO2 emissions in China shows that almost no study has been executed to explore the impact 

of energy technology patents. Therefore, it is necessary to explore the relationship between 

energy technology patents and CO2 emissions in China. On the one hand, this study could 

help get a better understanding of the relationship between energy technology innovation and 

CO2 emissions; on the other hand, it could provide references for Chinese government to 

make energy technology policy. 

The current study explores the relationship between energy technology patents and CO2 

emissions in China. Considering the potential different role of fossil-fueled and carbon-free 

technology innovations in reducing CO2 emissions, we distinguish patents for fossil-fueled 

technologies from patents for carbon-free energy technologies. The former mainly refers to 

the patents relevant to fossil-fueled (coal, oil and natural gas etc.) technologies in energy 

sectors and energy user sectors, the latter mainly refers to patents relevant to nuclear and 

renewable energy technologies. Specifically, this research tries to answer the following 

research questions: (1) Is there a significant relationship between patents for fossil-fueled 



 

technologies and CO2 emissions? (2) Is there a significant relationship between patents for 

carbon-free energy technologies and CO2 emissions? (3) Are the relationships the same in 

eastern, central and western China? To avoid omitted variable bias, GDP is also included in 

the current study due to its important role in affecting CO2 emissions and energy technology 

patents. To examine such relationships, dynamic panel data approach will be applied.  

The rest parts of this paper are organized as follows: Part 2 introduces theoretical 

background; Part 3 explains energy uses and energy technologies in China’s regions; Part 4 

introduces data sources and data processing, elaborates model specification and methodology; 

Part 5 shows the empirical results and discussions of relationship between China’s energy 

technology patents and CO2 emissions, including the causality analyses between patents for 

fossil-fueled technologies and CO2 emissions, and that between patents for carbon-free energy 

technologies and CO2 emissions; The last part shows main conclusions and policy 

recommendations of the current research. 

2. Theoretical background 

The goal of this paper is to explore the relationship between domestic energy technology 

patents and CO2 emissions in China. In this section, we first analyzed the role of energy 

technology patents in emissions reduction. The potential different impact of patents for 

carbon-free energy technologies and patents for fossil-fueled technologies on CO2 emissions 

was also discussed. After that, we explained why only focusing on domestic energy 

technology patents.  

2.1 The role of energy technology patents in carbon emission reduction 

Many studies found that energy technology innovation and energy technology R&D 

could reduce carbon emissions (Garrone and Grilli, 2010). Technology innovation could help 



 

keep carbon emissions from increasing in the long run (IPCC, 2007; Popp et al., 2009). And it 

is promising for developing countries to reduce carbon emissions by applying new 

technologies (Bernstein et al., 2006). Previous studied also reported that increased R&D had 

negative influence on energy and emission intensities in developing countries (Fisher-Vanden 

and Wing, 2008). In China, indigenous R&D was negatively related to energy intensity and 

CO2 emissions (Ang, 2009; Teng, 2009). 

Energy technology R&D is used to measure input of innovation process, whereas energy 

technology patents directly reflect output of R&D investment and innovation performance 

(Grilliches, 1990). Energy technology patents provide a wealth of information on the nature of 

invention, and are usually used as indicators of advances in specific technological areas 

(Dechezlepretre et al., 2010; Jamasb and Pollitt 2011; Popp et al., 2011). Energy technology 

patents are highly related to energy technology R&D expenditure, and they are likely to 

increase as R&D activity increases (Margolis and Kammen, 1999). In addition, through 

defining intellectual property rights, the patents internalize spillover effect of energy R&D, 

and then improve knowledge creation and diffusion of energy technology, which in turn 

inspire innovation activities. Therefore, we may deduce that energy technology patents could 

help to reduce CO2 emission. 

Some studies show that carbon-free energy technologies (e.g. wind, nuclear etc.) have 

better CO2 emission reduction effect than fossil-fueled technologies (e.g. gas-fired and 

coal-fired technologies). Chen et al. (2011) explored the contributions of various low-carbon 

technologies in CO2 emission mitigation. They found that wind and nuclear were the best 

technologies with reduction rates of almost 100%. CCS (carbon capture and storage) was 

effective as well, with reduction rate ranging from 64% to 81%. Super-critical (SC), 



 

ultra-super-critical (UC) and integrated gasification combined cycle (IGCC) were the major 

promising high-efficiency generation technologies of coal. They could mitigate CO2 emission 

intensity with moderate rates, and the rates were stabled at 15% for SC, slightly floating from 

20% to 25% for UC, and ranges from 18% to 34% for IGCC (Chen et al., 2011). Gnansounou 

et al. (2004) studied the strategic technology options for mitigating CO2 emissions in 

Shanghai electricity-generating system. They found that maximum potential effect of CO2 

emission mitigation of natural gas CCPP (combined cycle power plants) could reach 42.4 

million tons, that of nuclear power plants could be 298.2 million tons, whereas that of 

combination of coal technologies with natural gas CCPP has very slight reduction emissions 

(0.4 million tons). Consistent with these previous studies, we expect impact of patents for 

carbon-free energy technologies on CO2 emission reduction will be stronger than impact of 

patens for fossil-fueled technologies. 

2.2 The barriers to international energy technology deployment and transfer 

Usually, the deployment and diffusion of emerging energy technologies is slow and 

uncertain, and there are many obstacles to their wide-spread deployment, international 

transfer and diffusion (IPCC, 2000; Neuhoff, 2005; Stephens et al., 2008). In addition, 

previous works also reported that international transfer of energy and environmental 

technologies was limited in developing countries (Dechezlepretre et al., 2010; Popp, 2006; 

Popp et al., 2009). Therefore, in this study we focused on the impact of domestic energy 

technology patents on CO2 emissions in China. 

The “valley of death”- defined as the place “where good lab discoveries go to die 

because they lack the funding necessary to become a commercial product” (Heller and 

Peterson, 2005, p. 27) - is often cited as a key roadblock to the transformation of new 



 

discoveries to useful and innovative products and services (Ford et al., 2007). Generally, 

innovation processes involve three stages: basic research idea, technical/economic feasibility 

(transforming a discovery or idea generated by basic research into a potentially marketable 

product or service), and commercial production/diffusion. Often, the valley of death exists at 

Stage 1 and merely manifests at Stage 2 (George et al., 2007). Valley of death is often 

discussed as shortfall in research funding due to risk, appropriability, uncertainty, spillovers, 

increasing returns and coordination problems at intermediate stages (Auerswald and 

Branscomb, 2003). Therefore, these literatures show that the existence of “valley of death” 

has negative impact on emerging technology deployment and diffusion. 

Many researches exploring challenges of emerging energy technology deployment and 

diffusion have focused on technical, institutional, regulatory and legal, political, economic, 

social factors (Luthi and Prassler, 2011; Stephens et al., 2008). The barriers of information 

and financing constraints were particularly relevant in developing countries even after their 

technical feasibility had been demonstrated (Sagar and Zwaan, 2006). Specifically, Schroeder 

(2009) found that high project costs and the proof of additionality were general barriers to 

utilizing clean development mechanism (CDM) finance for renewable energy deployment in 

China. 

Some barriers that impede international technology transfer in energy and environmental 

sectors include high tariffs, investment risk, high interest rates, inadequate understanding of 

local needs and demands, lack of confidence about ”unproven” technologies, and high 

transaction costs (IPCC, 2000). The often-cited barriers in climate change negotiations are 

intellectual property rights (IPR) and financial mechanism (Tawney andWeischer, 2011). In 

addition, China’s imperfect patent system and weak domestic technology absorptive capacity 



 

also impeded international technology importation (Wei and Yang, 2010; Teng, 2009). 

Some scholars found that international transfer of energy and environmental technology is 

limited and occurs indirectly in developing countries. Dechezlepretre et al. (2010) analyzed 

patented inventions of 13 climate-related technology classes and found that innovation in 

climate change technologies was highly concentrated in Japan, Germany and USA. 

International transfers mostly occurred between developed countries (75% of exported 

inventions), and exports from developed countries to emerging economies were still limited 

(18%). Although China, Russia and South Korea were important innovators, there was nearly 

no flows between emerging economies. Popp (2006) studied international technology transfer 

of pollution control technologies and found that international transfer of these technologies 

occurred indirectly-via influencing domestic inventors-rather than directly. Direct adoption of 

new technologies might not be possible for the follower countries, and domestic R&D may be 

needed to modify foreign inventions to make them compatible with local markets (Lanjouw 

and Mody, 1996).  

3. Energy consumption and energy technologies in China’s different regions 

The level of economic development and energy consumption in eastern, central and 

western China is different, which result in territorial differences in energy intensity and 

energy technologies.  

3.1 The division of Eastern, Central and Western China  

Along with the division of three major economic regions by China’s National Bureau of 

Statistics, we divided 30 provinces and municipalities2 of Chinese mainland into eastern, 
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of CO2 emissions in Tibet is not available, Tibet is also not included. Therefore, this paper discussed 30 provinces and 
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central and western regions (Zeng and Chen, 2009). Eastern region includes 11 provincial 

administrative regions: Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, 

Shandong, Guangdong, and Hainan; central region includes eight provincial administrative 

regions: Heilongjiang, Jilin, Shanxi, Anhui, Jiangxi, Henan, Hubei, and Hunan; Western 

region includes 11 provincial administrative regions: Sichuan, Chongqing, Guizhou, Yunnan, 

Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang, Guangxi, and Inner Mongolia. 

3.2 Energy consumption in China’s different regions 

At present, Chinese energy sources mainly include coal, oil, natural gas, hydropower, 

nuclear and wind, etc. Energy efficiency and pollution level of each kind of energy are 

different. Since 1985, coal is always the major energy consumption of China, and the 

consumption of new and renewable energy resources is very few (CESY, 2009). In 2008, 

coal consumption accounts for 70.3 percent of China’s total energy consumption, and new 

energy formerly mentioned accounts for only 7.7 percent (CESY, 2009). In the future, new 

and renewable energy resources will remain subordinate to fossil energy resources. Along 

with the increasing population level as well as industrialization and urbanization, there will 

be soaring demand for fossil energy (e.g., coal). Such increasing demand for fossil energy 

will lead to increasing GHG emissions, which may sharpen the conflicts among resource 

constraint, environment protection and economic development.  

Energy structure is quite different in China’s different regions because of the difference 

in energy source and economic development, which has a significant impact on the regional 

energy intensity. There is a negative relationship between the level of regional economic 

development and energy intensity. Therefore, energy intensity in eastern China is lower than 

central and western China, which is also caused by advanced energy technology in eastern 



 

China (Li and Wang, 2008). There is a negative relationship between the proportion of coal 

consumption in total energy consumption and energy intensity. The proportion of coal 

consumption is the highest in high energy - consuming region with the value of 74.3%, and 

the proportion of crude oil, natural gas and electricity is 25.7%. The proportion of crude oil, 

natural gas and electricity is the highest in low energy - consuming region with the value of 

35.7%, and the proportion of coal consumption is 64.3% (Cui, 2007). Energy consumption 

structure in low energy-consuming region is more reasonable. High energy - consuming 

region is mainly located in western China, but low energy - consuming region is mainly 

located in eastern China (Cui, 2007). 

3.3 Energy technology in China’s different regions 

In the past decades, China has realized the importance of energy technology innovation 

and made relevant policies to induce energy saving and reduce carbon emissions. As a result, 

substantial energy technology patents have been achieved. As shown in Table 1, China’s 

energy technology patents have increased significantly since 1996. Specifically, energy 

technology patents in 2008 increased by five times during the past 13 years. Energy 

technology patents in eastern China have a higher growth rate than that in central and western 

China. The growth rate of energy technology patents in eastern China is higher than national 

average, and growth rates in central and western China are lower than national average. 

Table 1 

Growth rate of domestic energy technology patent applications in three regions of China 

year National (%) Eastern (%) Central (%) Western (%) 

1996 - - - - 

1997 4.27  07.24  10.22  0.33  

1998 25.39  36.31  20.70  10.10  



 

1999 30.96  41.06  29.84  24.43  

2000  58.33  76.81  45.70  43.32  

2001  66.63  93.10  47.04  29.64  

2002 88.61  123.98  72.58  48.53  

2003 105.70  155.32  75.54  38.11  

2004 118.39  182.24  91.67  51.14  

2005 167.06  247.51  122.31  95.77  

2006 292.26  418.78  218.01  175.24  

2007 354.37  530.88  250.27  166.45  

2008 503.90  771.04  323.92  248.53  

Source: Patent bibliographic database. State intellectual property office of the P.R.C, 2008. Available 

from http://www.sipo.gov.cn/sipo2008/. 

We can divide energy technology patents into patents for fossil-fueled technologies and 

patents for carbon-free energy technologies (Dechezlepretre et al., 2010; Johnstone et al., 

2010; Margolis and Kammen, 1999; Wang and Chen, 2010). As shown in Figure 1, the 

growth rate of patents for carbon-free energy technology is obviously higher than that of 

fossil-fueled technologies. Especially since 2000, the growth rate of patents for carbon-free 

energy technology has been higher. The growth rates of two kinds of patents in eastern China 

are both higher than that in Central and Western China. However it remains unknown whether 

domestic energy technology patents can help reduce CO2 emissions. Analyzing the dynamic 

relationship between China’s energy technology patents and CO2 emissions is very important 

for China’s future energy policies making. 

http://www.sipo.gov.cn/sipo2008/


 

 

Fig. 1. Growth rate of domestic patent applications for fossil-fueled technologies and those for carbon-free 

energy technologies in three regions of China from 1997 to 2008 

4. Data and methodology 

The economic development levels are different in China’s provinces and municipalities, 

and it has direct impact on the development of energy technology and amount of carbon 

emissions (Wei and Yang, 2010; Yu and Qi, 2007). So when analyzing the relationship 

between energy technology patents and CO2 emissions in China (including its eastern, central 

and western regions), GDP was included as a control variable. We selected the following 

variables in this research: energy technology patents, CO2 emissions and GDP. 

4.1 Energy technology patents in China’s provinces 

Energy technology patents in this study include innovation in energy sectors (e.g., power 

generation) and energy user sectors (e.g., car motors, heating plants and) (Van Vuuren et al., 

2003). Advances in fossil-fueled technologies (e.g. gas-fired and coal-fired plant technologies) 

could have a limited effect on carbon emissions (Chen et al., 2011; Gnansounou et al., 2004). 

In contrast, nuclear and renewable energy technologies are typical low-carbon, even 
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zero-carbon generation technologies. If hydropower and new renewable energy technologies 

are developed, and penetrate the power generation sector, investments in fossil-fuelled plants 

decrease and carbon emissions are expected to decrease as well (Luthi and Prassler, 2011). 

Therefore, we divided energy technology patents into patents for fossil-fueled technologies 

and patents for carbon-free energy technologies, and extracted energy technology patents 

relevant to energy saving and emissions reduction from 1997 to 2008 in China 

(Dechezlepretre et al., 2010; Popp, 2006; Popp et al., 2011). Fossil-fueled technologies3 

include technologies in energy sectors: coal, crude oil, gasoline, diesel and natural gas 

relevant to energy saving and emissions reduction (Margolis and Kammen, 1999); they also 

include technologies in energy user sectors: stoves relevant to energy saving and emissions 

reduction (including the sectors of metallurgy, building, cement, chemicals, heating plants, 

generating station and household), electricity-saving equipment or technology, electric 

vehicles, car motors, combustion engine, turbine, fuel injection, energy-efficient lighting and 

carbon capture & storage (CCS) (Dechezlepretre et al., 2010). The carbon-free energy 

technologies include4: solar, wind, ocean, geothermal, hydropower, nuclear, biomass and 

waste, synthesis Gas, hydrogen fuel, biomethane, biodiesel and ethanol (Johnstone et al., 2010; 

Popp et al., 2006; Popp et al., 2011; Wang and Chen, 2010). The technology fields covered by 

this study are reported in Table 2. 

Table 2 

Fossil-fueled and carbon-free energy technology fields covered 

category  Technology field 

Fossil-fueled coal, crude oil, gasoline, diesel and natural gas relevant to energy 
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saving and emissions reduction; 

stoves relevant to energy saving and emissions reduction (including 

the fields of metallurgy, building, cement, chemical industry, heating 

plants, generating station and household); 

electricity-saving equipment or technology; electric vehicles; car 

motors, combustion, engine, turbine, fuel injection; energy-efficient 

lighting and carbon capture & storage (CCS) 

Carbon-free 

solar, wind, ocean, geothermal, hydropower, nuclear, biomass and 

waste, synthesis Gas, hydrogen fuel, biomethane, biodiesel and 

ethanol 

According to China’s patent law, patents have three types: invention, utility models and 

design applications (SIPO, 2008). Inventions refer to new technology solutions or 

improvement to products or methods; utility models refer to new technology solutions to the 

shape of products, structure or their combination; design applications only protect the 

appearance of products, so the patents of design applications were excluded from our search 

(Dechezlepretre et al., 2010; SIPO, 2008). Therefore, the counts of energy technology patents 

in this study include two types: invention and utility models. Based on an extensive literature 

of technology developments in the area of energy technology, we identified a set of keywords 

for this study (Dechezlepretre et al., 2010; Johnstone et al., 2010; Popp, 2006; Popp et al., 

2011). These were used to determine appropriate International Patent Classification (IPC) 

codes which relate directly to energy technology patents for energy saving and emissions 

reduction in different subject areas. The IPC codes were identified in two ways based on the 

SIPO (State intellectual property office of the PRC) patent bibliographic database (SIPO, 

http://www.synthesisgas.com/
http://www.biomethane.com/


 

2008). First, we searched the descriptions of the classes online to find which were appropriate; 

second, we searched patents titles and abstracts using relevant keywords (Dechezlepretre et al., 

2010; Johnstone et al., 2010; Popp et al., 2011). Following the literatures (Dechezlepretre et 

al., 2010; Johnstone et al., 2010; Popp et al., 2011), when searching for relevant patents, two 

possible errors may arise: irrelevant patents are included and relevant patents are excluded. 

The first error happens if an IPC class includes some patents that bear no relation to energy 

saving and emissions reduction technologies. In order to avoid the first error, we carefully 

examined all patent titles in each IPC class considered for inclusion, and excluded those 

classes that include some patents not related to energy saving and emissions reduction 

technologies. This method lead to the second error and will be handled using the following 

method. In order to avoid missing relevant patents, we searched patent titles and abstracts 

using relevant keywords in those classes excluded when handling the first errors, e.g., electric 

vehicles, biodiesel, electricity-saving equipment or technology, car motors and heating plants. 

Using the above approach, we got the data of patents for fossil-fueled technologies and 

data of patents for carbon-free energy technology. To organize the data, patents were sorted 

by their application year. Then, we got energy technology patents data of 30 mainland 

provinces and municipalities from 1996 to 2008. We also divided energy technology patent 

data into categories of eastern, central and western regions. Table 1 and Figure 1 shows the 

rising trend of national energy technology patents from 1997 to 2008, as well as the similar 

trend of eastern, central and western regions.  

4.2 CO2 emissions in China’s provinces 

As there is no direct data of CO2 emissions in China, most previous studies got the data 

based on the estimates of energy consumption (Xu, 2010; Yi et al., 2011). Energy 



 

consumption data are obtained from energy balance sheets of all provinces in China Energy 

Statistical Yearbook (CESY, 2009), including 17 types of energy sources. Emission factors 

refer to the amount of GHG emissions per net calorific value that each energy generates by 

burning or using (IPCC, 2006). Emission factors of each type of energy are obtained from the 

Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas 

Inventories (IPCC, 2006) (Table 3). As main energy consumption of electricity and heating is 

coal in China, the CO2 emissions from electricity and heat are estimated based on energy 

input of thermal power and heating supply, and CO2 emissions of electricity and heating from 

total final consumption is no longer calculated in this study following prior research (Zhao et 

al., 2009). CO2 emissions per year of each province are calculated as follows (IPCC, 2006; Yi 

et al., 2011). We firstly calculated the heat of each energy based on energy consumption and 

average low calorific value of each energy; and then we calculated CO2 emissions of each 

energy based on the heat and emission factor of each energy; finally, we summed up CO2 

emissions of each energy and obtained total CO2 emissions of each province. 

Table 3  

Emission factor of each type of energy 

Energy type Kg CO2/TJ Energy type Kg CO2/TJ 

Raw coal 95,700.00 kerosene 71,500.00 

Cleaned coal 95,700.00 Diesel oil 74,100.00 

Other washed coal 95,700.00 Fuel oil 77,400.00 

briquettes 95,700.00 Liquefied petroleum gas 63,100.00 

coke 107,000.00 Refinery gas 57,600.00 

Coke oven gas 44,400.00 Natural gas 56,100.00 



 

Other gas 44,000.00 Other petroleum products 73,300.00 

Crude oil 73,300.00 Other coking products 80,700.00 

gasoline 69,766.67   

   Before 1996, energy consumption in Chongqing was contained in Sichuan Province. In 

order to accurately reflect CO2 emissions of each province, we chose data during 1997-2008. 

We divided CO2 emissions data of 30 provinces of mainland China during 1997-2008 into 

categories of eastern, central and western regions. As shown in Figure 2, CO2 emissions of 

eastern, central and western regions were increasing gradually during 1997-2008. Especially 

during the period of 2002-2008, CO2 emissions increased significantly at a high speed (see 

Figure 2). This was mainly due to China's rapid economic growth and continuous increase of 

energy consumption. 

 

Fig.2. CO2 emissions in eastern, central and western China 

4.3 GDP of China’s provinces 

GDP reflects the value of all final products and services of economic activities in a nation 

or region in a certain period (a quarter or a year), and it is the symbol of economic 

development level of a nation or a region. All provincial GDP data comes from China 

Statistical Yearbooks. We summed up provincial GDP data according to the division of 
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eastern, central and western China, and then obtained GDP data of three regions. Figure 3 

shows GDP growth of eastern, central and western regions in China during 1997-2008. We 

find that GDP growth rates of three regions were obviously higher during 2002-2008. In this 

research, nominal GDP was used for analysis. 

 

Fig.3. GDP in eastern, central and western China 

In the following parts of this paper, we will use ETP to represent energy technology 

patents, EMS to represent CO2 emissions, and GDP to represent gross domestic product. In 

order to reduce the volatility of data, we converted data to natural logarithm form, and named 

them as: LETP, LEMS, and LGDP. LETP stands for natural logarithm of energy technology 

patent, LEMS stands for that of CO2 emissions and LGDP stands for that of gross domestic 

product. 

4.4. Model specification and methodology 

Panel data is also called as pool data, which involves two dimensions: a cross-sectional 

dimension and a time-series dimension. Panel data usually brings researchers a large number 

of data points, increasing degrees of freedom and reducing collinearity among explanatory 

variables, hence improving efficiency of econometric estimates (Hsiao, 2003). With repeated 

observations of enough cross-sections, panel data analysis permits researchers to study the 
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dynamics of change with short time series (Yaffee, 2003). Panel data analysis endows 

regression analysis with both a spatial and temporal dimension. A general panel data 

regression model is written as: 

ititit uxy ++= '         TtNi ,...,2,1,,...,2,1 ==      )1(  

Where i is the individual dimension and t is the time dimension.  

Dynamic panel data was used in this paper to help verify the existence of causality 

between energy technology patents and CO2 emissions. First, panel data unit root test was 

used to inspect stationarity of the series; second, panel cointegration test was conducted to 

verify whether there were long-run relationships among the series; at last, the method of 

dynamic panel estimation was used to determine the direction of causalities. 

4.4.1 Panel unit root tests 

Because of non-stationary nature of time series dada, it is essential to test their 

stationarity before panel data models are established. The regression of unstationary panel 

data will lead to problem of pseudo-regression. Therefore, stationarity of panel data has to be 

examined firstly using panel unit root test. Panel unit root test is based on the following 

autoregressive specification (Mahadevan and Asafu-Adjaye, 2007): 

ititiitiit uXyy ++= −  1      TtNi ,...,2,1,,...,2,1 ==    )2(  

Where Ni ,...,2,1=  represents provinces observed over periods Tt ,...,2,1= ,  itX  are 

exogenous variables in the model including any fixed effects or individual trends, i  are the 

autoregressive coefficients. 1|| If i  , iy  is said to be stationary and has no unit root. 

Conversely, 1|| If i = , then iy  contains a unit root and is not stationary. itU  are the 

disturbance terms. 

The method of panel unit root tests is reported in Appendix A. 



 

4.4.2 Panel cointegration tests 

Panel cointegration tests can be done if panel data are unstationary and corresponding 

series are integrated with the same order. Cointegration test is used to determine long-run 

equilibrium relationship among series. According to the different characteristics of energy 

technology patents, CO2 emission and GDP data, panel data model with variable coefficients 

was selected to conduct cointegrating regression: 

itititiit uLGDPLEMSLETP +++= 21                   )3(  

Where i  is the province-specific intercept, the slope coefficients i1  and i2  vary 

from one individual to another allowing the cointegration vectors to be heterogeneous across 

provinces. The method of panel cointegration tests is reported in Appendix B. 

4.4.3 Panel causality tests 

If there is cointegration among LEPT, LEMS and LGDP, VECM (Vector Error 

Correction Model) can be further established to test causalities. In order to verify the causality 

between energy technology patents and CO2 emission, panel VAR model as equations 4a, 4b 

and 4c is established. 
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Where i1  and i2  are province-specific effects for the 
thi  individual in the panel, and 

i1  and i2  are the disturbance terms. 

In equations 4a, 4b and 4c, the method of OLS will lead to biased estimation because of 

the correlation between the lagged dependent variables and province-specific effect. To avoid 



 

this bias, first differences are taken in the equations. However, any information about 

long-run adjustments of data may be omitted in the first differencing; therefore, VAR model 

should be adopted to express short-run relationships among the variables. According to 

Engle-Granger theory, as long as there is cointegration among variables, VECM can be 

deduced from VAR model. The promise of VECM is that unequilibrium which happens in a 

time point can be corrected in the next time point, and it is possible to identify different 

relationships between variables in a long-run and a short-run. Therefore, panel-based VECM 

as equations 5a, 5b and 5c is established: 
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ECT is error correction term attained from the residuals of estimated cointegration 

equation (1), reflecting long-run equilibrium among the variables. Coefficient of ECT denotes 

the adjusting velocity when equilibrium is deviated. Coefficients of the difference terms 

reflect influence of independent variables on dependent variables in short-run, and lagged 

difference terms that are not significant can be eliminated. 

On the right side of equations 5a, 5b and 5c, lagged dependent variables have been 

included. As a result, regressors are inherently correlated with disturbance. In this case, OLS 

estimation will be biased and inconsistent. To solve the problem, Arellano and Bond (1991) 

proposed the estimator of first differenced GMM (DIF-GMM) in panel for the system 5a, 5b 

and 5c, using lagged dependent variables in levels as instrumental variables in first 

differences. Instrumental variables are affected only when disturbances are not correlated. 



 

Blundell and Bond (1998) pointed out that DIF-GMM estimation may be easily affected by 

weak instrumental variables. As a result, biased estimation may be achieved. To resolve this 

problem, they proposed the method of System-GMM. We have tried to use System-GMM as 

estimating method, but it did not work. Therefore, Arellano and Bond (1991)’s first 

differenced GMM robust one-step estimator was adopted to solve the equations of 5a, 5b and 

5c. The selection of lag order mj for instrumental variables should meet the requirement that 

the problem of autocorrelation of residuals can be avoided. AR test is used to help inspect 

autocorrelation of residuals. AR (1) and AR (2) are usually used to conduct test, and the rule 

is that hypothesis of existence of AR (1) should be rejected and hypothesis of existence of AR 

(2) should not be rejected. Sargan test of over-identifying restrictions is processed to check 

validity of the instruments. 

Causalities between variables are identified by verifying significance of coefficient of the 

dependent variables in panel VECM. First, short-run causalities are identified by testing 

hypothesis as follows: 

)1(  :0H  mj ,...,1,0 1j ==  and :0H  mj ,...,1,0 1j ==  in Eqs. )5( a ; 

)2(  :0H  mj ,...,1,0 2j ==  and :0H  mj ,...,1,0 2j ==  in Eqs. )5( b ; 

)3(  :0H  mj ,...,1,0 3j ==  and :0H  mj ,...,1,0 3j ==  in Eqs. )5( c ; 

And then, the significance of the ECT coefficients determines the existence of a long-run 

causality. At last, a simple Wald test can be applied to examine the direction of causal 

relationship between the variables. 

5. Results and discussion  

5.1. Results of panel unit root tests 



 

All statistics in LLC, IPS, Fisher-ADF and Fisher-PP and some statistics in Breintung 

test indicate that null hypotheses of LETP (LETP is analyzed based on patents for 

fossil-fueled technologies and patents for carbon-free energy technologies), LEMS and LGDP 

having a unit root are not rejected at 5% or 10% level, so the series are not stationary. 

However, null hypothesis that first difference of each variable has a unit root is rejected at 10% 

level, indicating that most of tests provide supporting evidence that the series are integrated of 

first order. The results of panel unit root tests in the national, eastern, central and western 

China are reported in Appendix A (Tabel A1, Tabel A2, Tabel A3 and Tabel A4). 

5.2 Results of panel cointegration tests 

The series of LETP, LEMS and LGDP are all integrated of order one in the  national, 

eastern, central and western China, thus we can proceed to conduct cointegration tests. On the 

one hand, for fossil-fueled technologies, all statistics in Panel PP, Panel ADF, Group PP and 

Fisher tests and some statistics in other tests reject null hypothesis of no cointegration at 10% 

level; on the other hand, for carbon-free energy technologies, all the resulting statistics, except 

for Panel v-Statistic, Panel rho-Statistic and Group rho-Statistic in pedroni test, reject null 

hypothesis of no cointegration at 1% level. Above results indicate that LETP, LEMS and 

LGDP are cointegrated series. Therefore, there is a long-run relationship between the series 

for provinces in the panel for fossil-fueled technologies and carbon-free energy technologies, 

which means that the series move together in the long-run. The results of panel cointegration 

tests are reported in Appendix B (Tabel B1 and Tabel B2). 

5.3 Results and discussion of panel causality tests on fossil-fueled technologies 

Table 4 

The results of DIF-GMM estimation on fossil-fueled technologies 



 

 National Eastern  Central  Western 

The number 

of lags 

Eqs. (5a) 2 2 1 2 

Eqs. (5b) 2 2 2 2 

Eqs. (5c) 1 1 2 2 

Validity 

(Yes or No) 

Sargan 

test 

Yes Yes Yes Yes 

significance 

(Yes or No)  

m1 Yes Yes Yes Yes 

m2 No No No No 

In order to determine the direction of causal relationship between the series, VECM (Eqs. 

(5a), (5b) and (5c)) is estimated using DIF-GMM estimator (Arellano and Bond, 1991). Table 

4 shows the estimates, the sargan test results and m1 and m2 statistics on fossil-fueled 

technologies. Complete estimates are reported in Appendix C (Table C1, Table C2, Table C3 

and Table C4). The estimates show that 2 lags or l lag is selected to make the disturbance 

have no serial correlation in the national and other regions. The results of m1 and m2 show 

that significant first order serial correlation is found in the first differenced residuals, while 

there is no evidence of second order serial correlation. The sargan statistics do not reject the 

validity of the instruments. 

To distinguish the possible different sources of causation, Table 5 shows the statistic 

values of wald test of no causality on fossil-fueled technologies. Firstly, we analyzed 

short-run causality between LEMS and LETP. On the one hand, there is a positive causal 

relationship running from LEMS to LETP in eastern and national level of China at the 1% 

significant level, indicating that increase in CO2 emissions pushes up increase in patents for 

fossil-fueled technologies. The reasons are as follows. Economy and technology in eastern 



 

China has developed relatively rapidly, and there is a substantial increase in CO2 emissions 

because of fossil-fueled dominated energy structure. To achieve higher energy efficiency and 

reduce CO2 emissions, the development of fossil-fueled technologies for energy saving and 

emissions reduction is promoted.  

On the other hand, there is a positive causal relationship running from LETP to LEMS in 

eastern and national level of China at the 10% significant level, indicating that increase in 

patents for fossil-fueled technologies causes increase in CO2 emissions. Our result is in line 

with the findings of Hu and Huang (2008) who found that the current technology did not help 

reduce CO2 emissions in China. This may be due to several reasons. Most advances in 

gas-fired and coal-fired plant technologies could have a limited effect on CO2 emissions 

(Chen et al., 2011; Gnansounou et al., 2004). The cost and risk is higher while firms are going 

to employ advanced fossil-fueled technologies which tend to have positive externality. Private 

firms are reluctant to invest in these technologies if no payoff is guaranteed (Popp, 2009). 

Therefore, some of the present patents for fossil-fueled technologies could not be adopted 

widely to reduce emissions. In addition, use of energy-efficient fossil-fueled technologies may 

have produced relevant rebound effects (Sorrell et al., 2009), which may lead to CO2 

emissions increase to some extent. 

Table 5 

Statistic values for panel causality tests on fossil-fueled technologies 

 

Dependent 

Source of causation (Independent) 

Short-run Long-run 

ECT ∆LETP ∆LEMS ∆LGDP 

National ∆LETP  0.4666 a 0.0636 0.8913 a 

∆LEMS 0.0181 b  0.1868 a 0.5998 a 

∆LGDP 0.0143 0.5726 a  0.8442 a 



 

Eastern  ∆LETP  1.3421 a -0.1104 1.0150 a 

∆LEMS 0.0239 b  0.1785 a  0.5329 a 

 ∆LGDP -0.0237 0.5626 a  0.9077 a 

Central  ∆LETP  0.0277 0.0727 0.6418 a 

∆LEMS 0.0172  0.0987 b 0.5308 a 

∆LGDP 0.0226 0.8178 a  1.0247 a 

Western  ∆LETP  0.1293  0.8144 a 0.9080 a 

∆LEMS 0.0061  0.4187a 0.7209a 

∆LGDP 0.0471 b  0.4177 a  0.5127 a  

a The null hypothesis of no causation is rejected at the 1% level. 

b The null hypothesis of no causation is rejected at the 10% level. 

The short-run and positively bidirectional causality between LEMS and LETP is not 

significant in central and western China. On the one hand, increase in CO2 emissions does not 

significantly push up increase in patents for fossil-fueled technologies. This may be due to 

poor technology infrastructure and insufficient investment in energy technology R&D in 

central and western China, which also impedes the absorption of energy-efficient fossil-fueled 

technologies (Wei and Yang, 2010). On the other hand, patents for fossil-fueled technologies 

could not curb CO2 emission. The result is closely related to low energy efficiency and lower 

transformation rate of patents in central and western China. 

Secondly, we analyzed short-run causality between LEMS and LGDP, and short-run 

causality between LETP and LGDP. There is a positive causal relationship running from 

LEMS to LGDP in eastern, central, western, and national level of China at the 1% significant 

level. The main cause of CO2 emissions is energy consumption, while economic growth needs 

energy consumption. There is a positive causal relationship running from LGDP to LEMS in 

eastern, central, western, and national level of China at the 1% or 10% significant level, 

which shows that the higher GDP, the greater CO2 emissions are. This result is affected by 

coal dominated energy consumption structure. There is also evidence of positively 



 

bidirectional causality between LETP and LGDP in western China, which implies that 

increase in patents for fossil-fueled technologies improves GDP output and increase in GDP 

promotes increase in patents for fossil-fueled technologies. However, the linkage between 

LETP and LGDP is not significant in, eastern, central, and national level of China. 

Thirdly, we analyzed long-run causality among three variables. If the coefficent of ECT is 

not equal to zero significantly, a long-run causality among the variables will exist and positive 

coefficient indicates that the variables deviate from long-run equilibrium. The Coefficients of 

ECT in eastern, central, western, and national level of China are positive and significant in 

Eqs. (5a), (5b) and (5c) at the 1% level. These results suggest that patents for fossil-fueled 

technology, CO2 emissions and GDP are heavily reliant on each other in the long run, and 

they all respond to a deviation from the long-run equilibrium in the previous period. 

5.4 Results and discussion of panel causality tests on carbon-free energy technologies 

Table 6 

The results of DIF-GMM estimation on carbon-free energy technologies 

 National Eastern  Central Western 

The number 

of lags 

Eqs. (5a) 2 2 2 2 

Eqs. (5b) 1 2 1 1 

Eqs. (5c) 2 2 2 2 

Validity 

(Yes or No) 

Sargan 

Test 

Yes Yes Yes Yes 

significance 

(Yes or No)  

m1 Yes Yes Yes Yes 

m2 No No No No 



 

Table 6 shows the estimates, the sargan test and m1 and m2 statistics on carbon-free energy 

technologies. Complete estimates are reported in Appendix D (Table D1, Table D2, Table D3 

and Table D4). The estimates show that 2 lags or l lag is selected to make the disturbance 

have no serial correlation in the national and other regions. The results of m1 and m2 show that 

significant first order serial correlation is found in first differenced residuals, while there is no 

evidence of second order serial correlation. The sargan statistics do not reject the validity of 

the instruments. 

To distinguish the possible different sources of causation, Table 7 shows the statistic 

values of wald test on carbon-free energy technologies. Firstly, we analyzed short-run 

causality between LEMS and LETP. There is a negative causal relationship from LEMS to 

LETP on carbon-free energy technologies in eastern, central, western, and national level of 

China at the 1% or 10% significant level, indicating that increase in CO2 emissions do not 

promote carbon-free energy technologies. This result may be due to several reasons. Coal 

accounts for 70.4% of China’s energy use and coal in electricity generation accounts for 83% 

of China’s all power generated in 2007 (Wang and Chen, 2010). This unreasonable energy 

structure has a serious threat to China’s energy security. Therefore, the main reason that 

Chinese government has tried to reduce dependence on fossil-fueled energy and promote the 

development of carbon-free energy technologies (e.g. solar, hydropower, wind and nuclear 

etc.) lies in energy security and not emissions reduction. In addition, renewable energy 

production and fossil-fueled production could be assumed to be perfect substitutes from the 

perspectives of consumer demand (Fisher and Newell, 2008). There is a positive relationship 

from CO2 emissions to fossil-fueled technologies, so a negative relationship may exist from 

CO2 emissions to carbon-free energy technologies. 



 

There is a negative short-run causality from LETP to LEMS on carbon-free energy 

technologies, which is significant in eastern China at the 10% level, indicating that patents for 

carbon-free energy technologies could reduce emissions in eastern China. The results are 

consistent with the previous study (Wei and Yang, 2010). Eastern China has strong economic 

basis and pays more attention to develop carbon-free energy technologies (e.g. hydropower 

and new renewable technologies) which have strong effect for reducing carbon emissions. If 

they penetrate the power sector and other sectors, carbon emissions are expected to decrease. 

However, patents for carbon-free energy technologies have limited impact on emissions 

reduction in eastern China; when patents for carbon-free energy technologies increase by 1%, 

then CO2 emissions will decrease by 0.02%. Possible reason is that private firms face higher 

cost and risk, so they are not actively adopting efficiency-energy technologies. For example, 

China has strong R&D ability and market competitiveness in the field of solar photovoltaic 

which have dominated about 70% market share in the world, but only 3% to 4% capacity is 

digested in China and the rest of 96% capacity is sold to the abroad (Gonsense, 2011). 

However, as a matter of fact, China’s R&D investment and ability in many fields of 

carbon-free energy technologies has larger gap compared with developed countries (Ma et al., 

2003). In addition, the actual time for a patent application to be granted lasting 5 to 6 years 

also hinders them from reducing CO2 emissions (Liu and Zheng, 2008). The negative 

short-run causality from LETP to LEMS in central and western China is not significant, 

indicating that the role of patents for carbon-free energy technologies reducing emissions is 

not obvious. Possible reason is that R&D investment is not sufficient and energy 

infrastructures are so imperfect that efficiency-energy technologies can’t get large-scale 

application in central and western China. 



 

Table 7 

Statistic values for panel causality tests on carbon-free energy technologies 

 

Dependent 

Source of causation(Independent) 

Short-run Long-run 

ECT ∆LETP ∆LEMS ∆LGDP 

National ∆LETP  -0.5344 a 0.0996 b 0.9671 a 

∆LEMS -0.0039  0.1423 a 0.6039 a 

∆LGDP 0.0138 b 0.5907 a  0.8178 a 

Eastern ∆LETP  -0.7070 b -0.1901 b 0.8666 a 

∆LEMS -0.0202 b  0.0887 b  0.6640 a 

 ∆LGDP -0.0096 b 0.5616 a  0.9036 a 

Central ∆LETP  -0.5394 b 0.1572 b 0.9389 a 

∆LEMS -0.0018  0.0914 b 0.4432 a 

∆LGDP 0.0492 b 0.8540 a  1.0850 a 

Western ∆LETP  -0.5684 b  0.5237 b 1.0376 a 

∆LEMS -0.0052  0.3633a 0.5298a 

∆LGDP 0.0096 b  0.4125 a  0.4406 a  

a The null hypothesis of no causation is rejected at the 1% level. 

b The null hypothesis of no causation is rejected at the 10% level. 

Secondly, we analyzed short-run causality between LEMS and LGDP, LETP and LGDP. 

There is evidence of short-run and positively bidirectional causality between LEMS and 

LGDP in, eastern, central, western, and national level of China at the 1% or 10% significant 

level, indicating that increase in CO2 emissions pushes up GDP, and increase in GDP leads to 

increase in CO2 emissions. There is a positive short-run causality from LETP to LGDP in 

eastern, central, western, and national level of China at the 10% significant level, which 

implies that increase in patents for carbon-free energy technologies contributes to GDP 

growth. The short-run LGDP has a positive and statistically significant impact on LETP in 

central, western, and national level of China at 10% level, indicating that increase in GDP 

promotes increase in patents for carbon-free energy technologies. 



 

Thirdly, we analyzed long-run causality among three variables on carbon-free energy 

technologies. The coefficients of ECT in eastern, central, western, and national level of China 

are positive and statistically significant in Eqs. (5a), (5b) and (5c) at the 1% level. These 

results add extra evidence for a long-run relationship among carbon-free energy technologies, 

CO2 emissions and GDP, and they all respond to a deviation from the long-run equilibrium in 

the previous period. 

6. Conclusions and policy recommendations 

6.1 Conclusions 

This paper empirically studied whether there was a causal relationship between energy 

technology patents and CO2 emissions from the perspective of energy technology innovation 

output. Our findings fill the literature gap of ignoring this important relationship and enrich 

energy technology innovation theory and CO2 emissions reduction literature. The 1997-2008 

panel data of 30 provinces and municipalities in mainland China were collected, and used to 

examine causal relationship between patents for fossil-fueled technologies and CO2 emissions, 

between patents for carbon-free energy technologies and CO2 emissions in eastern, central, 

western, and national level of China. Using the dynamic panel data approach, unit root test 

and cointegration test on patents for fossil-fueled technologies, patents for carbon-free energy 

technologies, CO2 emissions and GDP were conducted to determine stationarity of the series 

and whether there are long-run relationships between the series. Then, the dynamic 

relationships between the series were examined using DIF-GMM. 

We find that there is a long-run causality among patents for fossil-fueled technologies, 

CO2 emissions and GDP, and there is also a long-run causality among patents for carbon-free 

energy technologies, CO2 emissions and GDP. In the short-run: (1) From the perspective of 



 

patents for fossil-fueled technologies, there is positively bidirectional causality between 

LEMS and LETP, and it is significant in eastern and national level of China, while not 

significant in central and western China. (2) From the perspective of patents for carbon-free 

energy technologies, there is a significantly negative causality from LEMS to LETP in eastern, 

central, western, and national level of China; There is a negative causality from LETP to 

LEMS, and it is significant in eastern China, while not significant in central, western, and 

national level of China. According to our findings, patents for fossil-fueled technologies have 

no effect on emissions reduction. However, patents for carbon-free energy technologies are 

found to help reduce CO2 emissions, which is significant in eastern China, while not 

significant in central and western China. It is consistent with findings that the effect of 

domestic innovation on emissions reduction is clearly different in eastern, central and western 

China (Wei and Yang, 2010). 

6.2 Policy recommendations  

Our findings have some implications for Chinese government to design energy technology 

policy. On the whole, China’s investment in energy R&D is insufficient. Although energy 

technology patents have increased greatly, many energy-efficient technologies have not been 

widely adopted. China’s government needs to promote energy structure adjustment and 

develop carbon-free energy technologies. And a portfolio of instruments involving 

technology-push, market creation and interface improvement policies are essential to reduce 

CO2 emissions. 

Firstly, Chinese government could make technology-push policies to produce innovation 

through reducing the private cost (Nemet, 2009). Public energy R&D investment has unique 

long-term mitigation effects and should focus on technologies that are riskier and more 



 

immature. Chinese government should place emphasis on increasing R&D investment in 

carbon-free energy technologies, especially in central and western China. In addition, because 

of fossil-fueled energy dominated energy structure, it is difficult for carbon-free energy 

technologies to play a leading role in the short-term; Chinese government should also increase 

R&D investment in fossil-fueled technologies. Some measures targeted to support the 

domestic energy innovation systems are warranted, such as: government sponsored R&D, tax 

credits for companies to invest in R&D and funding demonstration projects (Nemet, 2009).  

Secondly, the government could make market creation policies to attain successful 

innovation through increasing the private payoff (Nemet, 2009). Market creation measures 

that support the development of carbon-free or low-carbon technologies and their deployment 

and diffusion across the energy users and utilities are essential to reduce CO2 emissions. The 

role of China’s carbon-free energy technologies in reducing emissions is limited: when 

patents for carbon-free energy technologies increase by 1%, then CO2 emissions will decrease 

by 0.02%. Some measures targeted to support market creation policies are warranted 

especially in central and western China, such as: intellectual property protection; government 

procurement of carbon-free energy technologies; create customers for carbon-free energy 

technologies, either through subsidies or through mandates/standards; production subsidy for 

carbon-free energy (Nemet, 2009; Taylor, 2008). In addition, some measures (e.g. emissions 

price, emissions performance standard, and tax on fossil-fueled energy) could affect the 

fossil-fueled sector directly and create the demand for energy-efficient technologies. They 

could simultaneously give incentives for fossil energy producers to reduce emission intensity 

and for carbon-free energy producers to expand production (Fischer and Newell, 2008). 

Thirdly, interface improvement policies are needed. These policies focus on improving the 



 

interface between technology suppliers and users, can bring new technologies to the market, 

and curb transactions costs of carbon-free and low-carbon technologies. Chinese government 

could perform the role of installer between technology inventors/manufactures and end-users. 

The government could ensure quality installers through decentralized policies like training 

and certification programs, and ensure quality installations through decentralized policies like 

inspection programs and warranty requirements (Taylor, 2008).  
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Appendix A. Panel unit roots tests and results 

Panel unit roots tests 

The method of panel unit root test can be classified into two groups. One is based the 

assumption that the unit roots of all individuals are identical. The method in this group mainly 

includes LLC (Levin-Lin-Chu) (2002) test, Breitung (2000) test, and Hadri (2000) test. The 

alternative is based on the assumption that different individuals have different unit roots. The 

method in this group mainly includes IPS (Im-Pesaran-Skin) (2003) test, Fisher-ADF test, and 

Fisher-PP test (Maddala and Wu, 1999). As each method has certain shortages, to overcome 

the bias of only using single method, five methods of LLC, Breitung, IPS, Fisher-ADF and 

http://acad.cnki.net.auth.lib.bit.edu.cn/kns55/oldNavi/Bridge.aspx?LinkType=BaseLink&DBCode=cjfd&TableName=cjfdbaseinfo&Field=BaseID&Value=ZGRZ&NaviLink=%e4%b8%ad%e5%9b%bd%e4%ba%ba%e5%8f%a3.%e8%b5%84%e6%ba%90%e4%b8%8e%e7%8e%af%e5%a2%83


 

Fisher-PP were used simultaneously in panel unit root test for the series of LETP, LEMS and 

LGDP. 

Results of panel unit root tests 

We selected the LLC, Breintung, IPS, Fisher-ADF and Fisher-PP panel unit root tests to 

examine stability of LETP, LEMS and LGDP respectively. As the series includes time trend, 

individual intercept and individual trend are selected to carry out above tests. The results of 

LLC, Breintung, IPS, Fisher-ADF and Fisher-PP panel unit root tests in the national, eastern, 

central and western China are presented in TableA1, TableA2, TableA3 and Table A4. 

 

 

Table A1  

Results of panel unit root tests in the national level of China 

 Variable LLC Breintung IPS Fisher—ADF Fisher—PP 

LETP 
Fossil-fueled 3.86 3.90 4.27 43.99 51.36 

Carbon-free -1.38 -1.92 b 2.67 47.87 50.69 

LEMS  3.04 4.59 7.98 9.50 1.83 

LGDP  17.10 8.44 18.59 2.88 1.68 

∆LETP 
Fossil-fueled -18.23 a -7.21 a -13.09 a 251.79 a 326.07 a 

Carbon-free -25.04 a -17.70 a 327.94 a 448.78 a 448.78 a 

∆LEMS  -7.14 a 0.96 -3.96 a 103.06 a 127.43 a 

∆LGDP  -6.71 a -6.24 a -3.71 a 106.61 a 126.95 a 

a Rejection of the null hypothesis at the 1% significance level. 

b Rejection of the null hypothesis at the 5% significance level. 

c Rejection of the null hypothesis at the 10% significance level. 

 

 

Table A2  

Results of panel unit root tests in eastern China 

 Variable LLC Breintung IPS Fisher—ADF Fisher—PP 

LETP 
Fossil-fueled 4.92 4.18 4.75 11.00 10.39 

Carbon-free 0.51 0.67 3.51 15.35 14.47 

LEMS  -0.51 2.27 3.47 4.58 0.77 



 

LGDP  9.38 3.85 10.31 1.25 0.71 

∆LETP 

Fossil-fueled -9.84 a -4.63 a -6.84 a 86.37 a 110.04 a 

Carbon-free -16.57

a 
-5.00 a -10.74 a 113.88 a 155.71 a 

∆LEMS  -5.19 a 1.13 -3.82 a 50.63 a 55.59 a 

∆LGDP  -6.09 a -4.79 a -3.36 a 46.92 a 54.82 a 

a Rejection of the null hypothesis at the 1% significance level. 

b Rejection of the null hypothesis at the 5% significance level. 

c Rejection of the null hypothesis at the 10% significance level. 

 

 

 

 

 

 

 

 

 

Table A3  

Results of panel unit root tests in central China 

 Variable LLC Breintung IPS Fisher—ADF Fisher—PP 

LETP 
Fossil-fueled 0.20 1.10 1.92 12.34 19.67 

Carbon-free -1.17 -3.15 a 1.67 7.43 10.68 

LEMS  3.28 2.51 4.76 2.72 0.36 

LGDP  7.28 4.15 7.89 1.52 0.91 

∆LETP 
Fossil-fueled -9.89 a -3.97 a -6.31 a 63.72 a 80.78 a 

Carbon-free -12.81 a -3.75 a -10.05 a 100.12 a 138.48 a 

∆LEMS  -3.11 a 1.29 -1.29 c 20.57 23.30 c 

∆LGDP  -2.97 a 0.69 -2.48 a 33.10 a 45.66 a 

a Rejection of the null hypothesis at the 1% significance level. 

b Rejection of the null hypothesis at the 5% significance level. 

c Rejection of the null hypothesis at the 10% significance level. 

 

Table A4  

Results of panel unit root tests in western China 

 Variable LLC Breintung IPS Fisher—ADF Fisher—PP 

LETP 
Fossil-fueled -0.74 -1.01 0.66 20.53 21.03 

Carbon-free -3.90 a -4.04 a -0.60 25.10 25.53 

LEMS  3.16 2.34 5.65 2.20 0.70 

LGDP  13.05 5.76 13.64 0.11 0.05 



 

∆LETP 
Fossil-fueled -11.69 a -3.94 a -9.34 a 100.75 a 134.31 a 

Carbon-free -13.87 a -4.31 a -9.88 a 113.97 a 154.59 a 

∆LEMS  -4.06 a -1.09 -1.63 c 31.86 c 48.55 a 

∆LGDP  -10.49 a -6.19 a -4.74 a 68.08 a 99.4 a 

a Rejection of the null hypothesis at the 1% significance level. 

b Rejection of the null hypothesis at the 5% significance level. 

c Rejection of the null hypothesis at the 10% significance level. 

Appendix B. Panel cointegration tests and results 

Panel cointegration tests 

At present, the method of panel cointegration test can be divided into two types. One type 

is the progress of EG (Engle-Granger) two steps, which is based on constructing statistics 

with residuals in the panel model (e.g., Pedroni (1999) and Kao (1999)). The alternative is the 

progress of trace statistics forwarded by Johansen (1995), which is based on regression 

coefficient (e.g. Fisher). Two different types of testing method have been proposed by 

Pedroni (1999) in dealing with panel cointegrating test. One is based on the scale of panel, 

including panel v-statistic, panel ρ-statistic, panel PP-statistic, and panel ADF-statistic. The 

alternative is based on the scale of group, including group-statistic, Group PP-statistic, and 

group ADF-statistic. There are two types of test statistics in Johansen cointegrating test: trace 

statistic and maximum eigenvalue statistic, which can be obtained by solving Π matrix. When 

testing long-run relationships among the series, in order to avoid the bias of using only one 

test method, Pedroni, Kao and Johansen were used simultaneously during panel cointegration 

test for the series of LETP, LEMS and LGDP. 

Results of panel cointegration tests 

We selected Pedroni, Kao and Fisher panel cointegration tests to examine the long-run 

equilibrium relationships between LETP, LEMS and LGDP. The results of Pedroni, Kao and 

Fisher panel cointegration tests in the national, eastern,  central and western China are 



 

presented in Table B1 and Table B2. 

 

 

 

 

 

 

 

Table B1 

Results of panel cointegration tests on fossil-fueled technologies 

statistics National Eastern Central Western 

Panel v 0.6299 0.3853 -0.4738 0.5742 

Panel rho -1.0557 c -1.0880 0.3617 -0.5707 

Panel PP -6.1528 a -4.3640 a -1.8271 a -3.6417 a 

Panel ADF 2.1974 a -1.4923 c -1.6915 a -1.2792 a 

Group rho 1.3144 0.6327 1.2063 0.5331 

Group PP -10.2449 a -6.3489 a -5.0038 a -6.2639 a 

Group ADF -2.9308 a -0.5559 -2.8188 a -1.900 b 

Kao-ADF -0.7917 -1.5296 c -0.6447 -0.3341 

Fisher (trace test) 116.1 a 48.0100 a 51.1500 a 49.9900 a 

Fisher (max-eigen test) 116.1 a 40.7300 a 44.6700 a 49.9900 a 

a Rejection of the null hypothesis of no cointegration at the 1% significance level. 

b Rejection of the null hypothesis at the 5% significance level. 

c Rejection of the null hypothesis at the 10% significance level. 

 

Table B2 

Results of panel cointegration tests on carbon-free energy technologies 

statistics National Eastern Central Western 

Panel v -0.8176 -0.7056 0.2525 -0.8234 

Panel rho -0.6036 -0.2320 -0.7173 -0.1722 

Panel PP -9.7876 a -6.5271 a -5.5328 a -5.2950 a 

Panel ADF -7.6739 a -3.6746 a -4.4070 a -5.0616 a 

Group rho 1.8570 1.3777 0.3456 1.3942 

Group PP -15.1029 a -8.6719 a -9.8280 a -7.8884 a 



 

Group ADF -10.2777 a -3.2448 a -6.8555 a -7.8818 a 

Kao-ADF -4.7471 a -3.6447 a -4.3630 a -2.7460 a 

Fisher (trace test) 132.5000 a 73.0700 a 82.7400 a 73.1000 a 

Fisher (max-eigen test) 132.5000 a 65.3700 a 81.2400 a 73.1000 a 

a Rejection of the null hypothesis of no cointegration at the 1% significance level. 

b Rejection of the null hypothesis at the 5% significance level. 
c Rejection of the null hypothesis at the 10% significance level. 

 

 

 

 

 

 

 

 

Appendix C Results of DIF-GMM estimation on fossil-fueled technologies 

Table C1 

DIF-GMM estimationa in the national level of China on fossil-fueled technologies 

 

Independent 

dependent 

∆LETPit ∆LEMSit ∆LGDPit 

∆LETPi,t-1 2.44 c  -1.80c -0.83 

∆LETPi,t-2 1.84 c -2.85c -0.52 

∆LEMSi,t-1 -1.78 c -1.18  -2.06 c 

∆LEMSi,t-2 -0.56 -1.22 -0.63 

∆LGDPi,t-1 -0.70 -1.87 c 1.25 

∆LGDPi,t-2 0.06 -0.54 -1.14 

ECTi,t-1 -12.23 b -3.33 b -4.49 b 

Sargan test 134.43 114.64 158.47 

m1 -2.15 b  -2.11 c -2.82 b 

m2 -1.19 -1.07 1.23 

a All tests are based on one-step robust GMM estimations, except Sargan test which is based on 

one-step GMM estimates. 

b Significant at the 1% level. 

c Significant at the 10% level. 

Table C2 

DIF-GMM estimationa in eastern China on fossil-fueled technologies 

Independent dependent 

∆LETPit ∆LEMSit ∆LGDPit 

∆LETPi,t-1 1.14 -1.93 c -0.08 

∆LETPi,t-2 1.30 -2.26 c 0.38 

∆LEMSi,t-1 0.31  0.55 -3.43 b 



 

∆LEMSi,t-2 -4.48 b  1.52 -0.32 

∆LGDPi,t-1 -0.50 -1.97 c 1.36 

∆LGDPi,t-2 -0.65 0.495 -1.01 

ECTi,t-1 -17.80 b -1.66 c  -16.32 b 

Sargan test 87.48 96.07 70.00 

m1 -1.83 b -1.89 c  -1.44 c  

m2 -1.47 -1.53 1.26 

a All tests are based on one-step robust GMM estimations, except Sargan test which is based on 

one-step GMM estimates. 

b Significant at the 1% level. 

c Significant at the 10% level. 

 

 

 

Table C3 

DIF-GMM estimationa in central China on fossil-fueled technologies 

 

Independent 

dependent 

∆LETPit ∆LEMSit ∆LGDPit 

∆LETPi,t-1 2.54 c -1.55  0.62 

∆LETPi,t-2 0.48 -0.40 -1.08 

∆LEMSi,t-1 -0.32 2.60 b -0.41  

∆LEMSi,t-2 -0.25 1.80 c -1.90c 

∆LGDPi,t-1 0.22 -1.65 c 1.59 

∆LGDPi,t-2 -0.04 -0.28 -0.47  

ECTi,t-1 -6.98b -2.33 c -4.40 b 

Sargan test 56.52 45.32 49.33 

m1 -2.27 c -2.06 c -1.82 c 

m2 -1.28 1.03 0.45 

a All tests are based on one-step robust GMM estimations, except Sargan test which is based on 

one-step GMM estimates. 

b Significant at the 1% level. 

c Significant at the 10% level. 

 

 

Table C4 

DIF-GMM estimationa in western China on fossil-fueled technologies 

 

Independent 

dependent 

∆LETPit ∆LEMSit ∆LGDPit 

∆LETPi,t-1 4.00 b -0.69 -1.93 c  

∆LETPi,t-2 2.34 c  -0.89 -1.42  

∆LEMSi,t-1 -1.76 0.69 -0.46 

∆LEMSi,t-2 0.78 0.63  1.89 c 



 

∆LGDPi,t-1 -1.99 c  -2.15 c -0.95 

∆LGDPi,t-2 0.37 -2.44 c 1.10 

ECTi,t-1 -9.55 b  -2.90 b -1.85 c  

Sargan test 52.17 84.56 60.90 

m1 -1.70 c -1.77 c -1.81 c 

m2 -0.73 -1.63 1.55 

a All tests are based on one-step robust GMM estimations, except Sargan test which is based on 

one-step GMM estimates. 

b Significant at the 1% level. 

c Significant at the 10% level. 

 

 

 

Appendix D Results of DIF-GMM estimation on carbon-free energy technologies 

Table D1 

DIF-GMM estimationa in the national level of China on carbon-free energy technologies 

 

Independent 

dependent 

∆LETPit ∆LEMSit ∆LGDPit 

∆LETPi,t-1 0.66   -0.50 -2.03 c 

∆LETPi,t-2 -1.99 c -0.23 -1.06 

∆LEMSi,t-1 -0.88 -0.89  -2.25 c 

∆LEMSi,t-2 -2.83 b -1.01 -1.06 

∆LGDPi,t-1 -1.57 -2.17 c 1.25 

∆LGDPi,t-2 -2.20 c  -0.58 -0.68 

ECTi,t-1 -8.91 b -2.59 b -4.71 b 

Sargan test 106.99 113.64 149.03 

m1 -3.98 b  -2.47 c -2.41 c 

m2 -1.65 -1.66 1.40 

a All tests are based on one-step robust GMM estimations, except Sargan test which is based on 

one-step GMM estimates. 

b Significant at the 1% level. 

c Significant at the 10% level. 

Table D2 

DIF-GMM estimationa in eastern China on carbon-free energy technologies 

Independent dependent 

∆LETPit ∆LEMSit ∆LGDPit 

∆LETPi,t-1 0.09 0.89 0.44 

∆LETPi,t-2 -0.39 1.76 c -0.55 c 

∆LEMSi,t-1 1.89 c 1.47 -2.13 c 

∆LEMSi,t-2 0.07 -0.97 -0.81 

∆LGDPi,t-1 -1.31 0.02 -0.73 



 

∆LGDPi,t-2 -1.82 c 2.2 c -0.97 

ECTi,t-1 -7.40 b -2.32 c -6.12 b 

Sargan test 71.21 65.36 70.22 

m1 -2.23 c -1.74 c -1.73 c 

m2 -1.83 0.54 -0.75 

a All tests are based on one-step robust GMM estimations, except Sargan test which is based on 

one-step GMM estimates. 

b Significant at the 1% level. 

c Significant at the 10% level. 

Table D3 

DIF-GMM estimationa in central China on carbon-free energy technologies 

 

Independent 

dependent 

∆LETPit ∆LEMSit ∆LGDPit 

∆LETPi,t-1 -1.10 -0.70 -2.61 b 

∆LETPi,t-2 -5.56 b 1.18 -0.71 

∆LEMSi,t-1 -0.21 3.81 b -0.49 

∆LEMSi,t-2 -1.40 c 1.14 -2.44 c 

∆LGDPi,t-1 -1.69 c -1.30 c 1.96 c 

∆LGDPi,t-2 -1.02 0.16 0.18 

ECTi,t-1 -4.80 b -2.07 c -5.04 b 

Sargan test 44.83 48.07 23.94 

m1 -2.21 c -2.02 c -2.19 c 

m2 -1.26 0.01 1.40 

a All tests are based on one-step robust GMM estimations, except Sargan test which is based on 

one-step GMM estimates. 

b Significant at the 1% level. 

c Significant at the 10% level. 

 

 

 

Table D4 

DIF-GMM estimationa in western China on carbon-free energy technologies 

 

Independent 

dependent 

∆LETPit ∆LEMSit ∆LGDPit 

∆LETPi,t-1 2.25 c -0.46 -1.78 c 

∆LETPi,t-2 1.06 -0.50 -1.15 

∆LEMSi,t-1 -0.73 0.87 -0.82 c 

∆LEMSi,t-2 -1.13 c 1.21 -0.07 

∆LGDPi,t-1 -0.36 -4.10 b 0.53 

∆LGDPi,t-2 -1.43 c -0.82 4.15 b 

ECTi,t-1 -6.52 b -2.41 c -1.42 c 



 

Sargan test 51.50 62.96 73.05 

m1 -2.60 b -1.87 c -1.81 c 

m2 -0.90 -1.77 0.75 

a All tests are based on one-step robust GMM estimations, except Sargan test which is based on 

one-step GMM estimates. 

b Significant at the 1% level. 

c Significant at the 10% level. 

 


