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Abstract: The application of data envelopment analysis (DEA) as a multiple criteria decision making 

(MCDM) technique has been gaining more and more attention in recent research. In the practice of 

applying DEA approach, the appearance of uncertainties on input and output data of decision making unit 

(DMU) might make the nominal solution infeasible and lead to the efficiency scores meaningless from 

practical view. In this paper, we analyze the impact of data uncertainty on the evaluation results of DEA, 

and propose several robust DEA models based on the adaptation of recently developed robust optimization 

approaches, which would be immune against input and output data uncertainties. The robust DEA models 

we developed are based on input-oriented and output-oriented CCR model, respectively, when the 

uncertainties appear in output data and input data separately. Furthermore, our robust DEA models could 

deal with random symmetric uncertainty and unknown-but-bounded uncertainty, in both of which the 

distributions of the random data entries are permitted to be unknown. We implement the robust DEA 

models in a numerical example and the efficiency scores and rankings of these models are compared. The 

results indicate that the robust DEA approach could be a more reliable method for efficiency evaluation and 

ranking in MCDM problems. 

Keywords: data envelopment analysis (DEA), multiple criteria decision making (MCDM), robust 

optimization, uncertain data, efficiency, ranking. 

 

1. Introduction 

Data envelopment analysis (DEA), initiated by Charnes et al. (CCR), is a mathematical programming 

methodology for measuring the relative efficiencies of a set of decision making unit (DMU) [1]. Cooper et 

al. pointed out that DEA has been used in evaluating the performances of many different kinds of entities 

engaged in many different kinds of activities in many different contexts [2]. Cook and Seiford summarized 

the major research in DEA over the last 30 years, which provides a very good research framework [3]. The 

application of DEA as an alternative multiple criteria decision making (MCDM) technique has been 

gaining more and more attention. Stewart contrasted DEA and MCDM, and pointed out that not only these 

two approaches are superficially similar problems, but the concepts of efficiency in DEA and Pareto 

optimality in MCDM are comparable [4]. He indicated that DEA could be seen as an alternative MCDM 

tool. Sarkis analytically compared DEA with the structure of MCDM and concluded that DEA could 

provide comparable results to traditional MCDM approaches, and DEA is advantageous to decision makers 

by requiring less information [5]. Therefore, the success of wide use of DEA in the area of performance 

evaluation together with the formal analogies between DEA and MCDM could make DEA as a good 
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alternative approach of MCDM. 

In the conventional DEA models, all the data of the input and output are assumed to have the form of 

specific numerical values which are “know exactly”. However this assumption may not be always true. In 

some situations, some data may not be known exactly with high accuracy but known as in the forms of 

interval data or ordinal data. Cook et al. extended the data type in DEA to ordinal form [6,7], and Cooper et 

al. discussed the case of interval data [8,9]. The mixtures of these data are referred to as imprecise data and 

the associated DEA models are proposed [8]. There are two different approaches in dealing with the 

imprecise data in DEA. One approach uses the scale transformations and variable alternations to convert 

the non-linear DEA model into a linear program, which were proposed by Cooper et al. [8], and then were 

simplified by Zhu [10] and further developed by Kao [11]. The other approach converts imprecise data into 

exact data first and then uses the standard linear DEA model to calculate the efficiency intervals. Kao 

developed such a method which applies a two-level mathematical programming [11]. 

If the “not known exactly data” in DEA are considered to be more general as, say, “uncertain data”, which 

have uncertain entries and the “true” values of these data are unknown. For example, to consider a measure 

of the data violation, assume that the true values of the uncertain data are obtained from the “nominal 

values” by random perturbations (1 )j j j ja a a→ = +  where 
j  is a random variable distributed on 

[ 0.001,0.001]− . We have several reasons to believe that some of the input and output data of DEA, which 

characterize certain evaluating systems or processes, could hardly be known to exact or with high accuracy. 

Therefore, as Ben-Tal and Nemirovski mentioned in their research, it is quite nature to assume that these 

input and output data are indeed uncertain [12]. In fact, in the real-world evaluation problem, there is no 

guarantee that all the input and output data could be observed accurately, especially under the situation that 

some of the evaluation information are came from the expert’s subjectively judgment or approximately 

estimate, which are provided as imprecise data. When such kinds of data are used in DEA, a certain DMU 

is reluctant to admit that it performs worse than another. Furthermore, in the survey study of some 

benchmark problems, Ben-Tal and Nemirovski pointed out that in linear programming problems, even 

“quiet small perturbations of ‘obvious uncertain’ data coefficients can make the ‘nominal’ optimal solution 

heavily infeasible and thus practically meaningless” [12]. As a linear programming based approach, DEA 

will never be able to escape from the impact of data uncertainty, i.e., a small perturbation on input and 

output data of DMU could make a big change on the efficiencies, so the results of the ranking could be 

unreliable in many cases especially when the efficiency of particular DMU is close to another. We will take 

a further analysis of the impact of data uncertainty on DEA in Section 2. Therefore, in the application of 

DEA, we need to develop some “robust” DEA models which are capable of generating more stable 

efficiency scores and more reliable related ranking, so that a small change in input and output data cannot 

change the evaluation results. 

Based on the robust optimization approach of Ben-Tal and Nemirovski  [12,13,14], and Bertsimas and 

Sim [15,16,17], Sadjadi and Omrani proposed a new DEA method with the consideration of uncertain data, 

which could be seen as a robust DEA [18,19]. Since they proposed a good idea for formulating the DEA 

model which could deal with symmetric and bounded random variables as the entries of the data, their 

model should be further improved. Because though they pointed out that the uncertainty should be 

considered in different parts of input and output data, they only proposed the model which considers the 

output uncertainty. The reason that they did not give the model which considers the input uncertainty might 

be that the output uncertainty model is based on input-oriented CCR linear model, but the input uncertainty 

model could hardly be formulated based on the same oriented CCR linear model with clear meanings of the 

entries of uncertainties. 



 

Recent developed DEA sensitivity analysis could be considered as a method which may deal with DEA 

uncertainty problem. Charnes et al. utilized the concept of distance to determine radii of stability within 

which the occurrence of data variations will not alter a DMU’s classification status [20]. Another type of 

DEA sensitivity analysis is based on super efficiency DEA approach, which is initiated by Andersen and 

Petersen [21]. This technique developed by Charnes et al. [22] could be used in the situation where 

simultaneous proportional variance is occurred in all inputs and outputs for a specific DMU under 

evaluation. Then Zhu proposed a new approach, where the DEA sensitivity analysis could be done in a 

general situation that the input and output data of a testing DMU and the remaining DMU are allowed to 

vary simultaneously and unequally [23,24]. For a summary discussion of DEA sensitivity analysis, see 

Cooper et al. [25]. However, we have to emphasize that our approach in this paper is quite different from 

sensitivity analysis. In DEA sensitivity analysis, people are interested in how much the efficiency score of 

DMU to a perturbed problem can differ from the nominal problem. In contrast, we want to know by how 

much the optimal efficiency to the nominal problem can violate the constraints of the perturbed problem. 

Furthermore, DEA sensitivity analysis can only quantify the stability of the nominal efficiency with respect 

to input and output data perturbations, but it does not show the way on how to improve the stability of 

DMU efficiency. The latter issue is exactly what is addressed by robust DEA method.  

 In this paper, we develop several robust DEA models based on Ben-Tal and Nemirovski’s robust 

optimization approaches [12,13,14], which could deal with uncertainty data and provide stable and reliable 

evaluation results. And the models proposed in this paper, which could consider the input uncertainties as 

well as output uncertainties are based on output-oriented and input-oriented CCR models, respectively, so 

as to make the meanings of the uncertainties in these models clear. Furthermore, our robust DEA models 

also could deal with the data uncertainty in different forms: random symmetric uncertainty and 

unknown-but-bounded uncertainty. 

 

2. Data envelopment analysis and the impact of uncertain data on it 

The original fractional DEA model which is an input-oriented CCR model is presented in model (1): 
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which evaluates the relative efficiencies of n DMUs, each with m inputs and s outputs denoted by xij and yrj, 

respectively, by maximizing the ratio of weighted summation of outputs to weighted summation of inputs. 

ui and vr are weights associated with inputs and outputs, respectively. In addition, 
0ijx and 

0rjy  are the ith 

input and rth output for the DMU under evaluation. Model (1) is a non-linear programming problem, and it 

is equivalent to the following linear programming problem (2) which is more computational convenient: 
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Now we analyze how the uncertain data affect the DEA results. We intend to take the analysis based on the 

simplest assumption: The “true” value ijx  and rjy  of the uncertain input and output data are obtained 

from the nominal value xij and yrj by random perturbation: (1 )ij x ij ijx x = +  and (1 )rj y rj rjy y = + , 

where 
x  and y are given uncertainty levels and ij  and rj  are random variables distributed 

symmetrically in the interval [ 1,1]− . The random perturbations affecting the uncertain data of a particular 

inequality constraint are independent identical distribution. Now we look at a DEA example which includes 

ten DMUs, each has three inputs and two outputs. For the inputs and outputs data, see Table 1. 

 

Table 1    The input and output data for each DMU 

DMU 
Input Output 

x1 x2 x3 y1 y2 

A 11 15 115 102 64 

B 10 24 127 109 64 

C 30 20 109 90 69 

D 7 20 82 124 70 

E 11 16 123 88 77 

F 8 11 135 109 89 

G 14 25 118 120 72 

H 35 18 126 80 69 

I 9 18 86 117 60 

J 12 19 75 94 88 

 

First we solve the problem in standard CCR model (1) so as to get the nominal optimal solution of weights 

to compute the efficiency scores and ranking, which are shown in the second and third columns of Table 2. 

Then using the nominal optimal solution of weights reported by the CCR model (1), we compute the 

efficiency scores and rankings when the input or output data are randomly perturbed for the uncertainty 

level 0.1 = . The results of the analysis are shown in the fourth to eleventh columns of Table 2. The 

impact of perturbations appearing on single input x2 or single output y2, are shown in the forth to fifth or 

sixth to seventh columns; and the impact of perturbations appearing on all input x or all outputs y are shown 

in the eighth to ninth or tenth to eleventh columns. From the analysis results we could find that: in 10 

DMUs, the nominal efficiency scores of 3 DMUs (DMU D, F and I) turned out to be greater than 1 when 

input x2 have uncertain entries; the nominal efficiency scores of 3 DMUs (DMU D, F and J) turned out to 

be greater than 1 when output y2 have uncertain entries; the nominal efficiency scores of 3 DMUs (DMU D, 

F and I) turned out to be greater than 1 when all input x have uncertain entries; and the nominal efficiency 

scores of 3 DMUs (DMU D, F and J) turned out to be greater than 1 when all input y have uncertain entries. 

The efficiency scores greater than 1 violate the inequality constraint of model (1). The reason of the 

efficiency scores becoming greater than 1 is that the optimal solution of weights from the nominal problem 

becomes (partially) infeasible when the data uncertainties appear. In another word, it is because that the 

perturbed efficiency scores are computed by using the nominal optimal solution of weights obtained from 

the standard CCR model in which the input and output data are assumed exact. Furthermore, the ranking 

for nominal efficiency scores and the rankings for all other efficiency scores affected by uncertain data 

entries are inconsistent with each other, and the largest gap between the rankings for the same DMU is 3 



 

(DMU J). Therefore, the analysis of the impact of data uncertainty on DEA leads to the following 

conclusion: in real-world evaluation process, when applying DEA approaches, one cannot ignore the 

possibility that a small perturbation on input or output data of DMU can make the nominal optimal solution 

of the weights (partially) infeasible, which leads to (some of) the efficiency scores meaningless from 

practical view and the ranking unreliable. Consequently, in the application of DEA, there exists a real need 

of robust DEA method which is immune against input and output data uncertainty that can heavily affect 

the quality of efficiency scores, and is capable of generating more reliable ranking for decision making 

units. 

 

Table 2    The results from nominal and uncertainty problem 

DM

U 

CCR 
Perturbation 

on x2 

Perturbation 

on y2 

Perturbations 

on all x 

Perturbations 

on all y 

Efficienc

y 

score 

Rankin

g 

Efficienc

y 

score 

Rankin

g 

Efficienc

y 

score 

Rankin

g 

Efficienc

y 

score 

Rankin

g 

Efficienc

y 

score 

Rankin

g 

A 0.859 1 5 0.818 8 5 0.859 2 5 0.824 3 5 0.828 1 5 

B 0.670 1 9 0.659 5 9 0.672 5 9 0.661 5 9 0.636 7 10 

C 0.703 4 8 0.735 6 7 0.706 9 8 0.701 4 8 0.680 6 8 

D 1.000 0 1 1.041 5* 1 1.002 1* 3 1.065 0* 2 1.001 2* 3 

E 0.776 5 6 0.764 9 6 0.757 6 6 0.783 3 6 0.749 4 6 

F 1.000 0 1 1.029 9* 2 1.006 1* 2 1.095 0* 1 1.020 8* 2 

G 0.740 2 7 0.731 4 8 0.714 4 7 0.708 1 7 0.695 9 7 

H 0.638 4 10 0.657 8 10 0.651 2 10 0.656 8 10 0.673 4 9 

I 0.986 9 4 1.028 8* 3 0.982 5 4 1.036 3* 3 0.956 7 4 

J 1.000 0 1 0.949 0 4 1.035 4* 1 0.967 2 4 1.035 3* 1 

* denotes the efficiency scores which are greater than 1 and violate the model constraint. 

 

3. Robust optimization 

The robust optimization technique has recently been introduced into the mathematical programming 

problem to deal with the entering of perturbation. When modeling the optimization problem with data 

uncertainty, robust optimization technique could provide a solution that is guaranteed to be good for all or 

most possible realizations of the uncertainty in the parameters. Soyster investigated the robust optimization 

approaches in which the column vectors of the constraint matrix were assumed to belong in a convex 

uncertainty sets [26], and Ben-Tal and Nemirovski proposed a new method to model the uncertainty data 

based on interval and ellipsoidal uncertainty sets [12,13,14]. To present the robust optimization method, 

consider a linear programming problem (3): 

min

. . ,

.

Tc x

s t Ax b

l x u



 
    (3)

 

where A is the matrix of coefficients which is assumed to be affected by uncertainty and x is the vector of 

decision variables. To model the uncertainty in coefficients under robust optimization technique, consider a 

particular row, the ith row, of the matrix A and let Ji represent the subscript set of coefficients in row i that 

are subject to uncertainty. Ben-Tal and Nemirovski proposed that there are two ways to implement the 



 

robust optimization technique, depending on whether to treat the uncertainty affecting the coefficients as 

“unknown-but-bounded”, or as random [12]. 

Under the “unknown-but-bounded” coefficient assumption, a solution which immune against entry-wise 

uncertainty of given magnitude   affecting uncertain coefficients of linear programming is needed, i.e., 

the solution should have such characteristics: it is feasible for the nominal problem (3); suppose that in the 

ith inequality constraint of (3), each entry of the coefficient ,ij ia j J , of uncertain data is assumed to 

range in the interval [ , ]ij ij ij ija a a a − + , where 0   is a given “uncertainty level”, and “| |” is the 

absolute value sign. Whatever are the true values of uncertain coefficient from these intervals, the solution 

must satisfy the ith constraint. Such a solution is called ( )-reliable solution. Then the robust counterpart of 

(3) is: 
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It is easy to see that (4) is equivalent to the linear programming (5): 
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where xj and yj are decision variables extended by xj. Then, the way to get a robust optimal solution to (3) is 

to solve the  -interval robust counterpart (5) (IRC[ ]) of the uncertainty problem. 

Under the random coefficient assumption, the second characteristic of the solution in the above assumption 

will be translated to its probabilistic version: in the ith inequality constraint of (3), each entry of the 

coefficient ,ij ia j J , of uncertain data is obtained from the nominal values ija  by random perturbations: 

(1 )ij ij ija a= + , where 0   is a given uncertainty level (percentage of perturbations), 0ij =  for 

ij J , and the perturbations 
ij  are independent random variables symmetrically distributed in the 

interval [-1,1]. The solution of this problem is called ( ,  )-almost reliable solution. Then the robust 

counterpart of (3) is: 
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where xj, yij and zij are xj extended decision variables, and   is a preference parameter or “safety 

parameter”. Parameter   is controlled by the given “reliability level” 0  , which we will explain in 

the proposition below. In (6), under the coefficients uncertainty, we have a proposition as: 

Proposition. Assume (xj, yij, zij) are the feasible solution of the optimization problem (6), where   is a 

positive parameter. Then for every i, the probability of the event 
ij j ij

a x b  is at most 2exp( 2)Ω = − , 

i.e., the probability of the violation of the ith constraint in (6) is at most  . 

For the proof of this proposition, see [12]. Then, the way to get a robust optimal solution to (3) is to solve 

the ( ,  )-robust counterpart (6) (RC[ ,  ]) of the uncertainty problem. 

As Ben-Tal and Nemirovski indicated, RC[ ,  ] is less conservative than IRC[ ], because the feasible 

solution (xj, yj) of IRC[ ] is a feasible solution of RC[ ,  ] when zij is set to be 0. Infect, in the case of 

large set Ji, IRC[ ] can be much more restrictive than RC[ ,  ] [12]. Here, we highlight the essential 

difference between “unknown-but-bounded” coefficient assumption and random coefficient assumption: 

IRC[  ] assumes that uncertainty is represented by a range of potential values, and no probability 

distribution is assigned to this range of potential values. To satisfy a constraint in the IRC[ ] means to 

satisfy the constraint for any uncertainty variable in the designated uncertainty set, with no exception. On 

the other hand, RC[ ,  ] represents uncertainty as a random variable, which takes certain probability 

distribution. In RC[ ,  ], constraints can only be satisfied in the probability sense, that is, the constraint 

should be satisfied with a probability greater than a threshold value of 1 － . Furthermore, RC[ ,  ] has a 

practical drawback compared to IRC[ ], which is that the former non-linear programming problem, 

although convex and “well-structured”, is more demanding computationally than the later linear 

programming program.  

In next section, when adopting the robust optimization technique in DEA, we will use both RC[ ,  ] and 

IRC[ ] for different DEA models. 

 

4. Robust data envelopment analysis 

In order to generate an “uncertainty-immune” DEA approach, we adopt the robust optimization technique 

in DEA. Since the uncertainties may appear in different part of the input or output data of DMU, and the 

uncertainties may appear in different form as the random symmetric or unknown-but-bounded uncertainty, 

we propose four different robust DEA models with the consideration of these different uncertainties. 

When the uncertainty appears in the output data, we adopt the RC[ ,  ] in DEA based on the 

input-oriented CCR model, so as to avoid the appearance of uncertainty in the input related equality 

constraint. And in order to avoid the appearance of uncertainty in objective function, we express the 

objective function as maxz, and add the constraint 
0 01

0
s

j r rjr
z y

=
−   into the constraints. Therefore, the 

input-oriented robust DEA model with output uncertainty is expressed in model (7): 
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where , ,i r rj   and 
rj  are decision variables, and xij and yrj are the ith input and rth output for DMUj, 

respectively. , ,rjy r R  have random uncertainties ranged in [(1 ) , (1 ) ]y rj y rjy y − + , and R is the 

subscript set of outputs which are subject to uncertainty. In addition, the efficiency of DMU under 

evaluation is 
0j

z , and 
0ijx and 

0rjy  are the ith input and rth output for the DMU under evaluation. This 

robust DEA model can guarantee on the probability of 21 1 exp( 2)y yΩ− = − −  that the robust solution is 

feasible. 

On the contrary, when the uncertainty appears in the input data, we adopt the RC[ ,  ] in DEA based on 

the output-oriented CCR model, so as to avoid the appearance of uncertainty in the output related equality 

constraint. And in order to avoid the appearance of uncertainty in objective function, we express the 

objective function as minz, and add the constraint 
0 01

0
m

i ij ji
x z

=
−   into the constraints. Therefore, the 

output-oriented robust DEA model with input uncertainty is expressed in model (8): 
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where , ,i r ij   and 
ij  are decision variables, and xij and yrj are the ith input and rth output for DMUj, 

respectively. , ,ijx r I  have random uncertainties ranged in [(1 ) , (1 ) ]x ij x ijx x − + , and I is the 



 

subscript set of inputs which are subject to uncertainty. In addition, the efficiency of DMU under evaluation 

is 
0j

z , and 
0ijx and 

0rjy  are the ith input and rth output for the DMU under evaluation. This robust DEA 

model can guarantee on the probability of 21 1 exp( 2)x xΩ− = − −  that the robust solution is feasible. 

Similarly, we could adopt the IRC[ ] in DEA based on the input-oriented and output-oriented CCR models, 

respectively, and give the related robust DEA models with output uncertainty and input uncertainty in the 

form of model (9) and (10): 
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In model (9) and (10), , ,i r r   and i  are decision variables, and xij and yrj are the ith input and rth 

output for DMUj, respectively. , ,rjy r R  and , ,ijx r I  have bounded uncertainties ranged in the 

interval [ , ]ij x ij ij x ijx x x x − +  and [ , ]rj y ij rj y rjy y y y − + , respectively, and R and I is the 

subscript set of outputs and inputs which are subject to uncertainty, respectively. In addition, the efficiency 

of DMU under evaluation is 
0j

z , and 
0ijx and 

0rjy  are the ith input and rth output for the DMU under 

evaluation. 

The above robust DEA models have a same goal which is to maximize the worst-case efficiency score of 

the under evaluating DMUj0 (model (8) and (10) are to minimize the reciprocal efficiency scores), i.e., in 

these models, DMUj0 is seeking its best efficiency under the worst situation that the output data of DMUj0 



 

are negatively perturbed (output decreased) and its input data are positively perturbed (inputs increased) by 

uncertainties, while the output data of all the other DMUs are positively perturbed and their input data are 

negatively perturbed by uncertainties. Therefore the solving process of robust DEA approach could be seen 

as a worst-case optimization process, which is the “spirit” and core idea of robust optimization technique. 

Model (7) and (8) are non-linear programming problems, and model (9) and (10) are linear programming 

problems, and all of them could be solved by using ordinary non-linear programming packages. We have to 

point out that, when adopting the RC[ ,  ] in DEA, the original DEA linear programming models are 

transferred into the robust DEA non-linear programming model (7) and (8), which might be harder to solve. 

In addition, as the size of the problem increases in terms of the variables and the uncertainties, the robust 

DEA models becomes more complicated. But when adopting the IRC[ ] in DEA, the robust DEA model (9) 

and (10) are still linear. The complexity of the non-linear robust DEA model may be one weakness of the 

robust DEA approach compared with the standard DEA approach. However, as mentioned above in Section 

2 and 3, the most advantage of robust DEA is its uncertainty immune property, which will lead to a more 

stable efficiency score and a more reliable ranking for each decision making units. 

 

5. Numerical example 

In order to give a better understanding of the performance of the proposed robust DEA approach, we 

implement our models in the same numerical example we used above when analyzing the impact of data 

uncertainty on DEA results. There are ten DMUs each has three inputs and two outputs. We assume that all 

of the input and output data entries could be perturbed by random variables ij  distributed symmetrically 

in the interval [ 1,1]− , the uncertainty level is considered to be 0.1 =  (both for input x and output y), 

and the reliability level is set to 0.05 =  ( =2.45). The results of the robust DEA models are shown in 

Table 3. The fourth, fifth and sixth columns show the directly computed efficiency (perturbed efficiency), 

robust efficiency and related ranking of model (7) which deals with the uncertainty appearing in all outputs, 

respectively. Then, the seventh, eighth and ninth columns show the directly computed efficiency (perturbed 

efficiency), robust efficiency and related ranking of model (8) which deals with the uncertainty appearing 

in all inputs, respectively. We have to indicate that since model (8) is output-oriented and the efficiency 

scores reported by it are greater than or equal to 1. For compare convenience, we use the reciprocal of these 

scores which are between 0 and 1. 

 

Table 3    The results from different approaches 

DMU CCR Perturbations on all y Perturbations on all x 

 Efficiency Ranking 
Perturbed 

efficiency 
Robust efficiency Ranking 

Perturbed 

efficiency 
Robust efficiency Ranking 

A 0.8591 5 0.7524 0.7022 5 0.7431 0.7043 5 

B 0.6701 9 0.5791 0.5480 9 0.5960 0.5493 9 

C 0.7034 8 0.6187 0.5755 8 0.6358 0.5796 8 

D 1.0000 1 0.9104 0.8182 1 0.9454 0.8182 1 

E 0.7765 6 0.6806 0.6352 6 0.7052 0.6356 6 

F 1.0000 1 0.9661 0.8182 1 0.9981 0.8182 1 

G 0.7402 7 0.6326 0.6056 7 0.6380 0.6065 7 

H 0.6384 10 0.6122 0.5224 10 0.5971 0.5275 10 

I 0.9869 4 0.8686 0.8067 4 0.9332 0.8078 4 

J 1.0000 1 0.9683 0.8182 1 0.9433 0.8182 1 



 

Mean 0.8375 - - 0.6850 - - 0.6865 - 

 

Note that Table 3 only reports a single result for each DMU with uncertain input and output data, in spite of 

the fact that we also implement model (9) and (10) to obtain the efficiency scores and related rankings for 

each DMU. The reason is that with our setup of  , both IRC[ ] and RC[ ,  ] have essentially the same 

optimal values. Similar phenomenon appeared in Ben-Tal and Nemirovski case study within relative 

inaccuracy 10-7 for each result of both the robust counterparts [12]. 

A possible explanation of such phenomenon is that the reliability level was set high and thus leaded to a 

large  . With this  , RC[ ,  ] will be less conservative than IRC[ ] only when there were a large 

number of uncertain data entries per constraint. Actually, we only assume two or three uncertain data 

entries for each constraint of our robust DEA models. In our numerical example, the robust efficiency of 

each DMU from IRC[ ] satisfies the constraints with no exception  and the robust efficiency from 

RC[ ,  ] satisfies the constraints with very high probability. Therefore, both of the two approaches have 

essentially the same solutions. 

Comparing the results from different robust DEA models and nominal CCR model, we could find that, 

since there is no perturbation and perturbations appear in input and output data, the average efficiency 

scores decrease from 0.837 to 0.685. The rankings from CCR model and robust DEA models have ties 

between DMU D, F, and J, which are evaluated as efficient DMUs under nominal CCR model and as the 

most efficient DMUs which having highest sufficiency scores under robust DEA models. The rankings 

from these robust DEA models are coincident with that of the nominal CCR model. Another important 

thing we find is that, by testing the optimal solution of weights reported by these robust DEA approaches 

and computing the efficiency scores under the same random perturbations on input and output data we used 

in the analysis of section 2, all of these weights are feasible and the related perturbed efficiency scores 

satisfy the constraint that the efficiency scores should be no more than one. 

The results of the numerical example could be summarized as follows: the uncertainty immune efficiency 

scores and related rankings for decision making units, i.e., the reliable solutions of robust DEA models, do 

exist, and the “price” of immune to uncertainty in terms of the efficiency scores is not high (the largest 

reduction of the average efficiency score is 0.15). Moreover, there is no “price” of immune to uncertainty in 

terms of the rankings, i.e., although the efficiency scores decreasing, the rankings of DMUs are not 

changed by adopting robust DEA approach. Therefore, by applying the robust DEA approach in this 

example, we gain a lot in the ability of getting evaluation results withstanding data uncertainty, while lose a 

little in the optimality of the efficiency scores, as well as lose nothing in the consistency of the ranking of 

DMUs compared with the nominal problem. 

 

6. Conclusion 

In this paper, we analyze the impact of input and output data uncertainty on the result of DEA and propose 

several robust DEA models based on the newly developed robust optimization approaches. These models 

could deal with uncertain input and output entries, and provide more reliable evaluation results. The robust 

DEA model presented in this paper where the output data are subject to uncertainties is based on 

input-oriented CCR model. On the contrary, we present an output-oriented CCR based robust DEA model 

where the input data are subject to uncertainties. Furthermore, two different forms of uncertainties, random 

symmetric and unknown-but-bounded uncertainty, are considered in our robust DEA models. We 

implement these models in a numerical example and the efficiency scores and rankings of the robust DEA 

models and standard CCR model are compared. The results from our analysis and the numerical example 

indicate that considering the input and output data uncertainties when applying DEA approach is very 



 

important, and using robust DEA approach could be more reliable for efficiency evaluation and ranking in 

MCDM problems. Since we consider the uncertainties affecting output and input data separately in this 

study, further research should focus on how to deal with uncertainties appearing in output and input data 

simultaneously. 
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