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A Hybrid Intelligent Optimization Method for Multiple Metal 

Grades Optimization 

Shiwei YUa,b  Kejun Zhua  Yong HEc 

(a School of Economicsand Management, ChinaUniversity of Geosciences, Wuhan430074 

bCenter for Energy and Environmental Policy Research, Beijing Institute of Technology, Beijing 100181 

c School of Management , GuangdongUniversity of Technology , Guangzhou 510520) 

 

Abstract:One of the most important aspects of metal mine design is to determine the optimum cut-off 

grades and milling grades which relate to the economic efficiency of enterprises and the service life of 

mines. This paper proposes a hybrid intelligent framework which is based on stochastic simulations and 

regression, artificial neural network and genetic algorithms is employed for grade optimization. Firstly, 

stochastic simulation and regression are used to simulate the uncertainty relations between cut-off grade 

and the loss rate.Secondly,BP and RBF network are applied to establish two complex relationships from the 

four variables of cut-off grade, milling grade, geological grade and recoverable reserves to lost rate and 

total cost, respectively, in which, BP is used for the one of lost rate, and RBF is for the other. Meanwhile, 

the real-coding genetic algorithm is performed to search the optimal grades (cut-off grade and milling grade) 

and the weights of neural networks globally. Finally, the model has been applied to optimize grades of 

Daye Iron Mine. The results show there are 6. 6978 milling Yuan added compare to un-optimized grades. 

Keywords:multiplemetal grades; cut-off grade; hybrid intelligent; artificial neural networks; genetic 

algorithms;optimization 

 

1. Introduction 

The cut-off grade and millinggrade are two crucial indices of mining process. Cut-off grade is defined 

as the grade that is used to discriminate between ore and wastewithin a given ore body [1,2]. If material 

grade in the mineral deposit isabove cut-off grade it is classified as ore and if material grade is below 

cut-off grade it isclassified as waste. While milling grade refers to the minimum average grade on usable 

deposit in the industry, namely, on the condition of the recent technical economy, to exploit the technically 

practical and economically reasonableminimum grade. Specifically, the lower of these two parameters will 
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increase the production cost of ore and further influence production capacity. When these values are too 

high, there will be a loss of ore resources and a reduction in the longevity of mine[3]. Therefore, 

theoptimalchoices of cut-off grade and millingarecrucialto enterprise economics and resource 

sustainability. 

Many authors have proposedvarious concepts and calculation methods regarding the cut-off grade and 

milling grade from different perspectives. Different approaches can be categorized as follows:(a) statistical 

estimation [4], inwhich classical statistical methods are used to estimate the grades. (b) 

dynamicprogrammingoptimize model [5,6,7]，in which a dynamic programming model is developed to 

optimize cut-off grade according to the different stages of metal mining and the factors affecting 

grades.Asadproposes a new cut-off optimization algorithm which considers the dynamic metal price and 

cost escalation during mine life[8].(c)the generalized reduced gradient algorithms[9]，which describes the 

determination of a cut-off grade strategy basedon Lane’s algorithm by adding an optimization factor based 

on thegeneralized reduced gradient algorithm to maximize theproject's NPV.(d) Staticoptimization based on 

Lane's theory [10, 11].These methods are good for specificmine production and management, but suffer in 

their generalizability with the low robustness. Until now, the cut-off grade and milling gradeare mainly 

determined by experimental data or worker’s experiencebecause of the particularity of production 

environment,the multiplicity of ore drawing and the extension of mine management. 

Moreover,thesetheories and methodscannot be used widelyby reason of its aim at the specific ore 

depositand production technique. Alongwith the production development, increase of resources’scarcity,and 

enhancement of technical and managing level, the experts andmanagers gradually realize that, the 

determining method basedon workers’experience, is easy and feasible though, greatly increasesthe mining 

and milling cost, and wastes resourceseriously. 

Obviously, cut-off grade and milling grade are the complex variables related to benefit, cost, 

geological grade, recoverable reserves, loss rate, etc.. In fact, in the mining and milling process, cut-off 

grade and milling grade are the complex non-linear functions related to above variables along with the 

change of time and space. It’s difficult to directly obtain their formulas (e.g.analytic functions) or indirectly 

establish their expressions (e.g.differential equations).Therefore, it is urgent to propose a high nonlinear 

mapping and intelligent method to optimize the cut-off grade and milling grade. Modelingand operation 

limited numbers of data is the most important superiority of soft computing compared with other 

conventional methods used in geosciences such as statistics and geostatistics. Applicability of soft 

computing inmodelingand operation the geological based domains has been discussed by different 



 

authors[12, 13]. One of the soft computingmethods, artificial neural networks (ANNs), has been proposed 

as an efficient tool for modeling and optimizing in recent years, mainly because of ANNs’ wide range of 

applicability and their capability to treat complicated and non-linear problems [14,15]. But ANN has 

anevident disadvantage, i.e. training time is long and could be trapped in a local optimum; in addition, the 

calculation may overflowor fluctuate between the optima. To overcome the disadvantage, many author 

applied Genetic Algorithms (GA) to form a hybrid method by GA-ANN in which ANN have been 

constructed and trained to accelerate the GA-basedsearch during the optimization process [16, 17].GA is 

another soft computing tool,which could provide versatile problem solving mechanism for search, 

adaptation, and learning in a variety of application domains, especially for those problems in which 

heuristic methods lead to unsatisfactory results[18]. They are random searches and optimization techniques 

guided by the principles of evolution and natural genetics. They are efficient, adaptive, and robust search 

processes, producing near-optimal solutions and having a large amount of implicit parallelism. The 

combined GA-ANN algorithmhas a great potential to handle problems such as optimizationin complicated 

nonlinear systems[19]. Although some research focus on applying GA-ANN to optimize the grade in 

recently years [20, 21], there are still many problems to be further studied such as how to hybrid GA and 

ANN; how to optimize the grades effectively. 

In this paper, a hybrid intelligent framework which is based on stochastic simulations and regression, 

artificial neural network and genetic algorithms is employed for grades optimization. The idea is detailed as 

follows. Firstly, stochastic simulation and regressionareused to simulate the uncertainty relations between 

cut-off grade and the loss rate.Secondly,BP network and RBF network are applied to establish the complex 

relationship from cut-off grade, milling grade, geologicalgrade and recoverable reserves to lost rate as well 

as total costs, respectively. Meanwhile, the real-coding genetic algorithm is performed to search the optimal 

grades (cut-off grade and milling grade) and the weights of neural networks globally. Finally, In order to 

show the applicability of the hybrid model in grade optimization, the case study of Iron Mine of China 

presented in the paper. 

This paper is organized as follows. Section 2 states the optimalproblem of the multiple metal grades. 

Section 3 introduces the background of artificial neural network and genetic algorithm. The hybrid 

intelligent optimization method isdetailedlydescribedin Section 4.Section 5 presents the casestudy ofIron 

Mine of China. Finally in Section 6, some conclusionsare given. 

 



 

2. Statement of the multiple metal grades optimizationproblem 

The cut-off grade and millinggrade are related with income, cost, and price. These variables vary with 

time and regions, and are highly complex as well as non-linear.The most common criteria used in 

cut-offgrade optimization is to maximize the net present value (NPV)[3, 8, 22]).Therefore, we propose a 

mathematic model for the optimization of the system as follows. 
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where NPV is the total n monthsnet present value, tR is the income of the t -th month, ta is the geographic 

grade of the t -th month, ja is the cut-off grade, ra is the milling grade, tq  is the recoverable reservesthat 

could be mined in the t -th month, ),,,( rjtt aaqaC  is the mining and selection cost function for the t

-th month, )( ja is the function of lost rate, ),,,( rjtt aaqa  is thefunctionof metal recovery rate,  is the 

grade of the selected ore, p is the price of the selected ore, and i is the discount rate. 

Solving themodel (1) is actually to find an optimal grade combination which makes the NPV be the 

maximumfrom a variety of grade combinations (cut-off grade, milling grade) in a given data of recoverable 

reserves, geological grade and unit cost.4 problemsof the solving process are included. 

Problem 1: Determining relationship between cut-off grade ja and loss rate . 

The cut-off grade for ore drawing means the grade of ore in thelast time of ore drawing. The higher 

cut-off grade leads to the largeramount of waste ore, which makes higher loss rate. The lossrate  depends 

on the cut-off grade ja directly, which is shown as follows: 

)( ja = （2） 

From Eq. (2), we could obtain cut-off grade ja corresponding to acertain loss rate .  

Problem 2: Determining relationship between the metal recovery rate  and cut-off grade ja , milling 

grade
ra , geologicalgrade ta , and recoverable reserves tq .In metal recovery rate management, how to 

accurately forecast the recovery rate is significant for improving the managementlevel of tailing ore. 



 

Present studiesshow that the relatedfactors that influence the recovery rate are ja ,
ra , ta and tq . Inthe 

practical production, the relationship between above mentionedfour factors and metal recovery rate is 

highly complexand nonlinear. We need to establish the following function 

),,,( rjtt aaqa =                               (3) 

Problem 3: Determining relationship between the cost of mining& milling C and cut-off grade ja , 

milling grade
ra , geologicalgrade ta , and recoverable reserves tq .Mining and milling cost can be showed 

as 

),,,( rjtt aaqaCC =                               (4) 

Problem 4: How to efficiently establish above 3 relationships? Obviously, cut-off grade and milling 

grade are the complex variables related to benefit, cost, geological grade, recoverable reserves, loss rate, 

etc.. In fact, in the mining and milling process,cut-off grade and milling grade are the complex non-linear 

functions related to above variables along with the change of time and space. It’s difficult to directly obtain 

their formulas(e.g.analytic functions) orindirectly establish their expressions (e.g.differential equations). 

3. Background of artificial neural network and genetic algorithm 

3.1 Artificial neural network 

Artificial neural network (ANN)theory has been developed in the form of parallel distributednetwork 

models based on biological learning process of thehuman brain[23].Contrarytothetraditionalmodel-based 

methods;ANNisadata-driven,self-adaptivemethodinwhich they are 

fewaprioriassumptionsaboutthemodelsfor problemsinthestudy.Theylearnfromexamplesandcapture subtle 

functionalrelationshipsamongthedataevenifthe underlyingrelationshipsareunknownordifficulttobedescribed. 

Thus, ANNiswellsuitedforproblemswhose solutionsrequireknowledge that is difficult to be specified and in 

which there are not enoughdata or observations. In this sense, they can be treated as one ofthe multivariate 

nonlinear non-parametric statistical methods.Due to its highly parallel structure, high speed self-leaning 

ability, self-adaptable processing ability, arbitrary function mappingability, powerful pattern classification 

and pattern recognitioncapabilities formodelingare designed the complexnonlinearsystems [24]. There are 

many ANN models; one of them is FeedForward Neural Networks (FNN).InFNN, the processing 

elements(neurons) are distributed in several layers,and the structure of a 3-layer FNN is shown in Fig. 1. 

The intermediatelayers are known as the hidden layers, while the first and the lastlayers are known as the 

input and output layers, respectively. Ingeneral terms, each neuron receives signals processed and 



 

transmittedby the neurons in the preceding layer and in turn processes andtransmits them on to the next 

layer. The number of layers and theway in which the neurons are connected decide the architectureof the 

network. 

The input signals ( nxxx ,,, 21  ) are the values of the variablesrepresenting the instance of the 

phenomenon to be modeled. Theyare collected by the input layer which transmits them through linksto the 

neurons in the first hidden layer. The signals are scaled ineach link according to an adjustable parameter 

associated witheach connection between neurons called weight. Asis shown in Fig.1,The weight between 

the second neuron of input layer and the first neuron of hidden layer is 
1

12w ,while the weight between the 

first neuron of hidden layer and the first neuron of output layer is 
2

11w . Usually, the initialweight of each 

link is randomly set. Each neuron in the hidden layercollects the signals from the connections, adds them 

up andproduces an output that is a function of the sum. The mostcommonly used functions are 

sigmoids,hyperbolic tangents andlinear versions of the latter. The signals traverse the network fromthe 

input layer to the output layer, where the network response tothe inputs is collected ( myyy ,,, 21  ). 
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Fig.1 The structure of a 3-layer FNN  

Amongst the various architectures of neural networks, theback-propagation (BP) type of FNN is the most 

popular and thishas been adopted in the present study. BP network used to train the networks by 

errorback-propagation algorithms [25].Basically, the BP algorithm works as follows: once the networkerror 

for a given input has been calculated, the weights of theconnections between the neurons in the last hidden 

layer and theoutput layer are modified according to the extent to which theseconnections have contributed 

to creating the error. 

BP is a gradient-descent procedure which, ideally, requiresinfinitesimal changes in the connection weights.  

Another popular ANN type of FNN is RadiusBased Function (RBF)neural network, which is capable of 



 

universalapproximation, utilizes basis functions in the hiddenlayer. RBFnetworks have recently attracted 

extensive interests in thecommunity of neural networks for a wide range of applications. They are universal 

approximators, possessthe best approximation property, have more compact topology than other neural 

networks and learn fast because of locally tuned neurons[26, 27]. 

 

3.2 Genetic algorithm 

Genetic algorithm (GA) developed by Holland is based onthe Darwinian theory of biological evolution [18, 

28]. It is a veryimportant stochastic search algorithm for solving optimizationproblems during the last two decades. 

GA has been widely andsuccessfully applied to various problems like operationresearch, image processing, and 

control problems[29-31], etc..GA is capable of solving wide range of complex optimization problems onlyusing 

three simple genetic operations (selection/reproduction, crossover, and mutation) on coded 

solutions(strings/chromosomes) for the parameter set, not the parameters themselves in an iterative fashion. GA 

considers several points in the search space simultaneously, which reduces the chance of convergence to alocal 

optimum. The pseudo-code algorithmdepicted in Fig. 2summarizes the general procedure of GA[28]. In the 

algorithm, )(tp denotes a population of m individuals at generation t .GA does not have many 

mathematical requirements foroptimization problems. In addition, the ergodicity ofgenetic and evolution 

operations makes GA more effectivein the global search. Also, the easy-to-grasp implementationprocedure 

underlying GA provides great opportunity tohybridize them with domain-dependent heuristics towardsa 

more effective strategy cast in accordance with theproblem at hand. For these advantages, GA has 

receivedconsiderable attention for their potential of a morerobust technique.  

 

Fig. 2. Genetic algorithms procedure. 

Traditional GA employed binary-string encoding is not suitable for many continuousoptimization 

problems[32, 33]. One major drawback of a binary-string genetic algorithm isthat it encodes parameters as 



 

finite-length strings such thatmuch computation time is wasted in the encoding and decodingprocesses. 

Instead, the real-coding is more suitable for these types of problems. The real-coding approachseems 

adequate when tackling optimization problems of parameters with variables in continuous domains[34]. 

Instead of the codingprocesses, real-coding GA directly handles the parameters themselvesand much 

computation time is saved. As for the main geneticoperators, RGA is the same as binary-string GA in the 

reproductionprocess, but they are different in the crossover and mutationprocesses. 

The application of genetic algorithm into artificial neural networkmainly includes two aspects [35]: one 

is to optimize theweights of network; the other is to optimize the topologicalstructure of network. This paper 

mainly discusses the former;the learning process of network is regarded as the process ofsearching for 

optimum in the weight space. 

4. The hybrid intelligent optimizationmethod 

In order to solve the Section 2mentioned 4 problem, we proposed a hybrid intelligent optimization 

methodwhich can be divided into an inner layer and an outer layer. The inner layer includes three parts. The 

first is the stochastic simulation and regression, whose function is to obtain the relationship ( ) ii

ja ,  

between cut-off grade
ja  and loss rate .The second is the BP artificialneuron networks（ANN）, whose 

function is to calculate : ( )
rjtt aaqa ,,, = , i.e., the metal recovery rate as afunction of cut-off grade ja , 

milling grade ra , geographic grade ta  , and geological reserve tq .The final part of the inner layer is the 

fuzzy systemused to obtain the total cost of mining C througha RBF. The outer layer is the genetic 

algorithm (GA). It searches for the combination of ( )
rj aa ,  and the weights of ANN thatmaximizes NPV 

while minimize the Mean SquareError (MSE) of the ANN. whereasthe inner layer carries out the local 

approximation,the outer layer carries out the global searching. 

 

 

4.1 The relationship between cut-off grade and loss rate 

Obviously, loss rate positively correlates with cut-off grade, which implies that the higher cut-off grade 

would result in the more abandoned ore and thereforethe higher loss rate. However, in the traditional 

production process, the loss rate is adopted in the calculation of mineral processing being completed, and 

the cut-off grade is not easy to be got.  

Expression )( ja  cannot be directly obtained by learning without the historical record of ja . 

Theoretically, to a certain extent, ja follows normal distribution every month;  and ja appear positive 

relationship, namely, the bigger ja , the bigger , vice versa. In order to express the complex relationship 

between ja and  , we applystochastic simulationsmethod,which hasbeen proved enlightening and useful 

in situations where the small volumes and moderate concentrations of reacting species make the 



 

fluctuations an important part of the system [36, 37]. This paperfirst aims at obtaining the cut-off grade 

based on loss rate by stochastic simulations, and then establishes the linear regression function (REG) 

between them.  

Simulation condition: assume cut-off grade ja ( )2,~ N with density function  

2

2

2
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−
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=
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j eaf .(5) 

The method can be describedin detail s follows: 

Step1.Let 1=k .Randomly generatetime series n interval ( ) +− ,  with group length equals T  (T  

represents time) .Let 
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denote the ranked time series from the smallest to the largest within each row. Let  
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bethe one-time simulation value of the cut-off grade ja atthe j–thmonth ( Tj ,,2,1 = ). 

Step 2. Evaluate the cut-off grade simulated vector
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 for each Tj ,,2,1 = , then the simulation is considered convergent and subsequently 

terminated. Otherwise increase the value of n , and repeatStep1until the subsequent Step2 terminates. 

Step 3. Rank the loss rate   (given data) from the smallest tothe largest inT months, match them with the 

simulated ja  values, and finally obtain the cut-off grade correspondingtothe loss rate in timeT . The 

simulation flow chart is shown in Figure 1. 

Step 4. Calculate the correlation coefficient between cut-off grade and loss rate. If the correlation is large 

(say, larger than 0.86), then regress the loss rate as a linear function (L-REG) of cut-off grade. Otherwise 

use other appropriate non-linear regression models. 

Fig.3 displays the structure of the proposed stochasticsimulation method. 
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Fig.3Flow chart of cut-off grade stochastic simulation algorithm 

Theorem:Under the assumption of Eq.(2), the simulated vector 
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where k ， h are positive integers，
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 are two simulated values of the cut-off grade. 

Proof:From Eq.(3),let ( )iTiii  ,,, 21 = , ni ,,2,1 = . They are independent random variables series 

from the normal distribution. The mathematical expectations of them are  =)( itE , variance is 

2)(  =itD . Consider random vector 
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According to the famous Tchebyshev Inequality[36], for any 0 ,  
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T ,,, 21  is the simulated values of cut-off 

grade. 

 

4.2 The metal recovery rate computation model 

The following traits exist in the mapping of cut-off grade, milling grade and the recovery rate of metal: 

(1) The datafrom geological and production reports are short of integrity andaccuracy; (2) In the production 

process, the cut-off gradeoccurs in the mining stage, milling grade occurs in mixing phase, the metal 

recovery rate takes place in the milling period, so there are indirectnessand backwardness; (3) The function 

relation is highlynonlinear and complex. Therefore, we propose to use the Back Propagation (BP) neuron 

network to establish models among these variablesaccording to the historical input-output data. 

 

4.3 Calculation of total mining and milling costs 

Mining and milling costsC  includeboth mining cost and milling cost, which can be represented as: 

( )
rjtt aaqaCC ,,,=

.
(8)Therefore, the mapping from 4 variables on the right side ofEq. (8) to C is 

not a simple mappingbut a complex one. In order to set the mapping betweenC , and jtt aqa ,, and ra we 

usea RBF network which became a popular technique since the 1980s because of its simple structure, 

well-established theoretical basis and fast-learning speed. 

 

4.4 Thehybrid intelligent optimization method design 

4.4.1Encoding 

Encode the chromosome which formed by grades (cut-off grade and milling grade) and the weights of 

BP network and RBF network by real-coding. The cut-off grade is 
1g  and milling grade is 

2g . While,

jwww ,..., 21 and kwww  ,..., 21 are the weights of BP network and RBF network, respectively. The structure 

of chromosome is shown Fig.4. 



 

jwww ,..., 21 kwww  ,..., 212g

Grades encoding Weights of ANN encoding

1gchromosome

 

Fig.4 Diagram of chromosome 

 

4.4.2Design of the GA operators 

(1)Selection operator 

Generally, selection operator of genetic algorithm is implementedby using roulette-wheel algorithm. The 

main defect of theroulette-wheel algorithm is that local optimal gene dominates thewhole generation, while 

global optimum would likely be eliminatedbefore emerging. Therefore, the roulette wheel with 

elitistselection method is considered as the selection mechanism in thisproposed real-coding GA 

algorithm[38]. This method including two phases,at first, the elitist strategy was adopted. The generation 

whose fitnessis within top 10% will be directly copied to the new generation. Then the rest of chromosome 

is selected by roulette wheel. 

 

(2) Crossover operator 

Crossover is a mechanism of randomly exchanging informationbetween two chromosomes. 

Thecrossovers mechanisms forbinary and real coding are different. In this study, a crossover ofreal-coding 

follows: Let 1chrom and 1chrom are two chromosomes, 
1r and 

2r  are two independently 

distributedrandom variables with range [0, 1].We can get two new chromosomesby Eq. (9). 
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(3) Mutation operator 

The purpose of mutation operation is to make genetic algorithmobtain local random research capability 

through varying certaingenes of chromosome. If a chromosome is selected for mutation,one gene is 

randomly selected for changing their values. In the respectof real representations the process is particularly 

simple:let p is a parent,and then the child chromosome is += pp ,where a distributed random 

variables with range [0, 1] is. 

 

(4) Adaptive probability of crossover and mutation 

Traditional crossover and mutation operators are based on arandomization mechanism, i.e., generating a 

cut point, and determiningthe position of the bit shifted by mutation of the solution. 

But this is not the case in natural evaluation which is mimicked bythe GA. Actually renewing the bits of the 

solution is dynamic oradaptive, but not random. The slightly modified adaptive probabilitiesof crossover 

and mutation given by Srinivas and Patnaikare used in this study to choose the probability of mutationand 

crossover according to the fitness value of the solutions[39]. Themodified expression of cp and mp are as 

follows: 
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Here, f  is the fitness of an individual, avef is the average fitness value ofthe population, and maxf and

minf are the maximum and minimumfitness value of the population respectively. f  is the larger of 

thefitness values of the solutions to be crossed. 

 

4.4.3Fitness function 

A fitness value is given by Eq. (12). 

NPV
EE

fitness
RBFBP

+
+

=
1

                        (12) 

Where
BPE and

RBFE  are the mean squared error of BP networks and RBF networks, respectively. NPV is 

the total net present value as in Eq.(1).  

 

4.5The steps of hybrid intelligent grades optimization 

We integratethe proposed genetic algorithm with stochastic simulations and regression, neuron 

networks to optimizecut-off grade ja and milling ra so that NPV can be maximized and minimize the 

MSE of the ANN. The implementation of the entirealgorithm is shown as follows:  

(1) Normalize raw data. 

(2) Initialize correlation parameters of the hybrid optimization algorithm:the size of population

sizepop _ , the max generation genmax ; initial parameter 4321 ,,, kkkk of adaptive cp and mp ; the 

max learn epochs of BP network
BPEP  and RBF network

RBFEP . 

(3) Generate initial real-coding population chromosome ],,,[ 21 WWgg   randomly. 
1g and

2g arethe 

code of cut-off grade and milling grade, while W and W are the weights of BP network and RBF 

network, respectively. 

(4)Input the individual to stochastic simulation (SS)and the linear regression function (REG) ,get the 

relationship between ja  and  . 

(5) According to chromosomes, set a BP network which uses grade value ,ja namely
1g ; 

ra ,namely
2g , 

recoverable reserves tq , and geographical grade ta  as the inputs while the metal recovery rate   as the 

output. Meanwhile, the BP network initial weights are given by W  which is a part of the chromosome. 



 

Train the network by BP algorithm for 
BPEP epochs. 

(6) Set a RBF network which uses 
1g ,

2g ,recoverable reserves, geographical grade as the inputs while 

the total cost C  as the output. The RBF network initialweights are also given by W   and then train the 

network by BP algorithm for 
RBFEP epochs. 

(7) Calculate the fitness function according Eq.(12). 

(8) Carry out the genetic operation (selection, crossover, and mutation) according to fitness function to 

obtain new generation of population.  

(9) Repeat step (4) to step(7) until the termination criterion is met. Finally output the optimized grade 

values. 

The flow chart of the algorithm is given in Fig.5. 

5. Case study 

Daye iron mine is the main domestic supply base of the Wuhan steel andiron (Group) Corp., which is a 

very famous large enterprise inChina. Daye iron mine locates at the Tieshan county in the city ofHuangshi, 

Hubei Province, about 90 km far from Wuhan city, withthe national highway No 206 passing through the 

mine. Daye ironmine has six big ore deposit from west to east, which are dividedin two mining workshops. 

Now it faces the following problems.First, the cut-off grade scheme was established according to themining 

technique, milling technology and  
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Fig.5Flow chart of hybrid intelligent system algorithm 

price of the concentratein 1990s, but now the fact that the scheme is reasonable or not needs to bestudied. 

Second, the geological condition, mining and milling technologyhave been greatly changed Along with 

reconstruction of millingprocess, it is necessary to find out the optimum grade of crude ore.Therefore, with 

the improvement in iron mining technology and the upgrade of ore selection process, there is a great 

demand to optimize cut-off grade and pre-selection grade of crude ore to guide the mining and selection 

process. Table 1 presents the relative raw data of Daye mine of 35 months from January 2005 to November 

2007. 

 

Table 1 The relative raw data of Daye iron mine 

Time 

recoverable 
reserves 

(ton) 

Geological 
grade (%)  

Cut-off 
grade (%)  

Milling 
grade 
(%) 

Metal 
recovery 
rate (%)  

Loss 
rate (%) 

Total cost  
(ten 

thousand 
Yuan) 



 

200501 87400 52.73 17.64 45.63 88.36 17.17 3241.85 

200502 79758 52.2 16.73 43 72.99 15.76 1963.25 

200503 112487 52.59 16.88 46.31 70.50 15.84 2629.59 

200504 117389 52.98 15.89 44.77 70 14.68 3180.41 

200505 117081 52.79 16.31 41.64 70.35 15.13 3554.68 

200506 118176 52.89 16.55 44.37 77.5 15.53 2886.44 

200507 116850 52.88 17.21 44.86 77.92 16.12 2916.28 

200508 124078 52.99 17.11 45.67 79.37 16.02 3315.72 

200509 119443 52.77 17.48 44.15 76 16.52 2896.86 

200510 129305 53.33 17.31 45.11 72.13 16.45 3354.84 

200511 104938 53.58 17.71 45.63 84.86 17.30 2875.79 

200512 62308 54 17.00 42.22 51.72 15.88 5631.27 

200601 115203 53.23 17.39 42.42 75.18 16.48 2839.24 

200602 117173 52.95 18.07 42.59 70.46 18.42 2879.86 

200603 111742 52.74 18.22 42.61 77.8 18.62 3342.96 

200604 133607 52.71 18.52 41.93 67.69 19.02 3716.11 

200605 142315 52.74 18.89 43.01 71.56 19.75 3784.27 

200606 146743 52.78 17.85 42.72 56.97 18.23 4039.98 

200607 129853 52.88 18.44 42.64 79.57 18.81 3964.99 

200608 132260 52.81 17.93 42.36 78.06 18.35 4447.65 

200609 125422 52.3 17.56 43.99 77.67 17.16 4384.32 

200610 80204 52.52 17.78 42.04 66.96 17.95 4063.94 

200611 124660 53.14 18.29 42.42 80.5 18.64 4564.21 

200612 124799 53.19 18.14 40.72 76.95 18.51 3996.54 

200701 112212 52.84 18.07 42.20 78.49 18.42 3303.39 

200702 143936 52.78 18.36 41.84 77.67 18.67 2840.79 

200703 144099 52.95 18.60 41.37 77.74 19.19 3701.04 

200704 135334 52.87 18.69 41.56 68.41 19.54 3951.00 

200705 146158 53.25 18.79 43.31 83.06 19.63 3656.89 

200706 149207 53.13 19.00 43.05 77.14 20.00 4602.53 

200707 149160 53.18 20.10 42.57 76.77 20.38 4757.97 

200708 149207 52.81 19.12 41.52 66.77 20.10 4393.16 

200709 149160 52.87 19.69 41.45 69.05 20.25 4039.37 

200710 146189 52.59 19.45 41.75 79.2 20.21 4279.91 

200711 143134 53.05 19.27 41.05 73.27 20.16 5285.25 

 

 

5.1 Calculation of loss rate 

The cut-off grade in Daye mine varied around 18%. Assume that cut-off grade ja (in percentage) 

follows a normal distribution with mean 18=  and 1= .The density functionis  
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j eaf .                                   (10) 

According to the method introduced in 2.1, we obtain corresponding cut-off grade (column4) from 

simulations.  

The correlation coefficient between the cut-off grade and loss rate is calculated as 0.97419, with an 

estimatedregression function of loss rate  as 127.1 −= ja (see Fig.6). 

 
Fig.6Regression fitting 

 

5.2 Calculationmetal recovery rate 

Additional data are obtained from the geographical reports, production reports and cost reports of Daye 

mine from January 2005 to November 2007. These data are presentedin Table1. We use these data from 

January 2005 to September 2007 as training data and those datafrom October 2007 to November 2007 as 

prediction data to establish a mapping from four factors to metal recovery rateby BP network. 

Use ()newff function in matlab6.5 to establish BP neural network, which contains 4 inputnodes, 1 

hidden layer, and 1output node. The transfer functions of hidden and outputlayer are tansigand purelin, 

respectively. The initial weights of network are given by W of each individual. The epochs of learning by 

BP algorithm are 500. The hidden nodeshave been chosen from 3 to 7. Table 2 shows that the best hidden 

nodes are 5. 

Table2 BP networks results comparison with different hidenods 

Hidden nodes Training data MSE Testing data MSE 

3 0.01623 0.02530 

4 0.01011 0.01852 
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5＊ 0.00786 0.01650 

6 0.00360 0.09840 

7 0.00015 0.89512 

 

5.3 Calculation of cost 
 

We still use data from January 2005 to September 9 2007 as training data and from October 2007 to 

November 2007 as prediction data (see Table 2). We use RBF network to establish a mapping of 

recoverable reserves tq , geographical grade ta , cut-off grade ja , millinggrade ra , to total cost C . The 

sample simulation graph is shown in Fig.8. Again the graph suggests that the neuron network has good 

simulation estimation ability. 

Use ()newrb function in matlab6.5 to establish RBF neural network, which contains a 4 inputnodesand 

1output node. The initial weights of network are given by W of each individual. And the hidden nodes are 

automaticallydetermined by ()newrb function.Theepochs of learning are 300.  

 

5.4 Results 
 

We chose the range of cut-off grade as 15.8-20.1%, the range of milling as 40.7-46.4%. The fitness 

function is give by Eq. (12) with  =64% ， p =517.12 ， i =0.05. Population 150_ =sizepop ; 

500max_ =gen ; 3.021 == kk ; 1.043 == kk . The total length of the chromosome is 42 which the grade is 

2, weight of BP is 25 and RBF is 15. Make programsin Matlab 6.5. When the training reaches the

genmax_ ,the best fitness value is 194.3054.Whilethe 
BPE  is 0.00786 and 

RBFE  is 0.00468.; the NPV 

is 114.5654 million. 

 The metal recovery rate and total cost simulated and predicted results are shown in Fig.7 and Fig.8, 

respectively. The 34 and 35 sample index is the prediction sample. We can see that the ANN composed in 

this study has a better simulation and prediction. 

According to Eq. (1), the calculation results are shown in the second row of Table3. 

Table 3Comparisons of NPV: before and after optimization 

 
Cut-off grade 

 (%) 
Milling grade 

(%) 
Loss rate 

(%) 
Recovery 

(%) 
NPV 

(million ) 

after 
optimization 

17. 8337～17. 836 7 46.4 26.86 73.14 114.5654 

Before 
optimization 

18 41~43 30.6 69.4 107.8676 

 



 

 

Fig.7 Metal recovery rate simulation 

 

Fig.8 Cost simulation. 

 

Table2 suggests that if we had used the optimal cut-off grade of 17.8337~17.8367%and the optimal 

milling grade of 46.4% in production, Daye minewould achieve a NPV of 114.5654 milling Yuan from 

01/2007 to 12/2007 while the real NPV is 107.8676milling under thecurrent grades as 18% and 

41~43%.There is 6. 6978 milling Yuan added compare to current grades. 

 

6. Conclusion 

This research is based on an integrated intelligent system from the genetic algorithm, random 
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simulationsand neuron networks. The relationship among the cost, revenue, grade, and metal recovery rate is 

highly complex and non-linear. The aim of this research is to obtain the optimized combination of cut-off 

grade and millinggrade to maximizethe profit of production process. The creativity of this research 

includes: 

1. We established a model to optimize cost, revenue, grade, and metal recovery rate in production process. 

This model includes 3 unknown functions related with cut-off grade and millinggrade. 

2. We designed a simple random simulation technique to obtain the cut-off grade related with the loss 

rate.  

3. We efficiently integrated some soft computing methods through a neural network. The inner layer of 

the network carries out the local approximation while the outer layer carries the out global search. The 

integration of these two layers can avoid the common problem of the local minimization of neural network. 
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