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Abstract: The process of energy conservation and emission reduction in China requires the specific and 

accurate evaluation of the energy efficiency of the industry sector because this sector accounts for 70 

percent of China’s total energy consumption. Previous studies have used a “black box” data envelopment 

analysis (DEA) model to obtain the energy efficiency without considering the inner structure of the 

industry sector. However, differences in the properties of energy utilization (final consumption or 

intermediate conversion) in different industry departments may lead to bias in energy efficiency measures 

under such “black box” evaluation structures. Using the network DEA model and efficiency decomposition 

technique, this study proposes an adjusted energy efficiency evaluation model that can characterize the 

inner structure and associated energy utilization properties of the industry sector so as to avoid evaluation 

bias. By separating the energy-producing department and energy-consuming department, this adjusted 

evaluation model was then applied to evaluate the energy efficiency of China’s provincial industry sector. 

Key words: Energy consumption; Energy conversion; Structure decomposition 

 

1 Introduction 

Accounting for more than one fourth of global total primary energy consumption [1], China’s efforts 

towards energy conservation and greenhouse gas emission reduction play an important role in global 

warming mitigation. Within the country, the Chinese industry sector is the primary energy consumer and 

comprises up to 70 percent of the national total energy consumption [2]. Evaluating and improving the 

energy utilization efficiency of the industry sector in China has been given high priority in the 

policy-making processes of governments [23, 24] and has attracted increasing interest from researchers [4, 

5, 26]. Data envelopment analysis (DEA) is a widely utilized approach to evaluate energy economic 

efficiency and was first proposed by Charnes et al. [3]. This approach measures the relative efficiencies of 

decision-making units (DMUs) based on multiple inputs and outputs. One of the characteristics of 

traditional DEA models is that it treats each DMU as a “black box” and identifies the efficiency in the 

absence of internal activities of a DMU [29, 30]. Therefore, when utilizing DEA for industrial energy 

efficiency evaluation, only the initial energy input and final economic output data are needed, whereas the 

data on energy production or energy conversion related to the internal activities in each industry department 

are usually omitted. 
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Several traditional DEA models have been applied to evaluate China’s regional energy efficiency. For 

instance, Hu and Wang [4] applied a standard DEA model to obtain the regional total-factor energy 

efficiency, and Wang et al. [5] evaluated the regional energy performance while considering undesirable 

outputs and broadening the energy efficiency study to multi-directional analyses. Li and Lin [28] estimated 

the total-factor energy efficiency of China’s regions using a combined model based on a superior efficiency 

DEA and sequential frontier model to improve the discriminating power and avoid the technical regression 

of traditional DEA approaches. Furthermore, utilizing a traditional DEA model, Zhao et al. [31] evaluated 

the total factor energy efficiency of provincial industrial sectors in China. In these cases, the “black box” 

DMU structure was applied for modeling, and thus, the energy efficiency as measured using total energy 

consumption (or primary energy consumption) as the input and gross domestic product (GDP) or gross 

value added as the economic output. However, in the “black box”, the conversion from primary energy (e.g., 

coal, oil and natural gas) to secondary energy (e.g., coke, liquefied petroleum gas, thermal electricity) is 

omitted, and the gross value added from an energy conversion process and a final energy consumption 

process cannot be separated. In other words, the energy production or energy conversion department and 

the energy utilization department in the industry sector are not distinguished from each other. To provide a 

more specific evaluation of the energy efficiency of industry based on the above differences, the traditional 

“black box” DEA model may lack discriminating power [6] and consequently cannot provide 

process-specific guidance to separately improve energy efficiency in the energy production department and 

energy utilization department. 

Furthermore, unlike general producing and consuming processes in manufacturing industries, energy inputs 

in some industry sectors are not only combusted as fuel to produce economic outputs but part of the energy 

inputs (both primary energy and secondary energy) are consumed within the “black box” for the production 

process. In other words, energy inputs can be divided into two parts. The first part is used for general 

producing and consuming processes, and the other part is the raw material for the “black box” itself. The 

traditional DEA model assumes that all energy inputs are directly consumed for producing outputs because 

the traditional “black box” modeling structure cannot distinguish these two parts before the energy inputs 

flow into the “black box”. Thus, differences in the energy properties in different departments of industry 

sectors may result in evaluation bias in the traditional model. 

Regarding the properties of different energy consumption processes, a two-stage network structure will be 

more appropriate to evaluate energy efficiency in industry. In this network structure, the first stage is the 

energy-producing or conversion department, whose input is primary energy and whose output is secondary 

energy. The second stage is the energy-consuming department, where energy (including both primary and 

secondary energy) is an input and part of the energy input (secondary energy) is the output of the first stage. 

In other words, within the network structure, some energy outputs that flow from the first stage become 

inputs in the second stage and can be considered intermediate inputs/outputs. Ignoring these intermediate 

measures in the traditional DEA model decreases the accuracy of industrial energy efficiency evaluation for 

different energy-using departments. 

This network structure requires more appropriate approaches that consider intermediate measures. To tackle 

this issue, a network DEA model should be applied. Färe and Grosskopf [7] as well as Seiford and Zhu [14] 

first develop a network DEA model that addresses links between different industrial departments. For more 

general situations, an extension of the network DEA model introduced by Tone and Tsutsui [8, 9] can be 

applied via the slacks-based measure (SBM) technique. Furthermore, Fukuyama and Weber [10] extended 

the SBM network DEA model for cases involving undesirable outputs. These network DEA models have 

been successfully applied to various industries. For example, Fukuyama and Matousek [11] evaluated the 

efficiency of Turkish banking systems, which have an inherent network structure. Yu and Lin [12] obtained 



 

the railway effectiveness in 20 countries using a multi-activity network DEA model. Hsieh and Lin [13] 

used a relational network DEA to test the performance of international tourist hotels in Taiwan. However, 

to the best of our knowledge, few studies have considered differences in energy utilization properties and 

applied the network DEA structure to evaluate energy efficiency in China’s industry sector. In this paper, 

we developed an adjusted network DEA model based on the approach described by Fukuyama and Weber 

[10] so as to improve industrial energy efficiency evaluation. We then applied this model to China’s 

industry sector. 

Although network DEA models can be applied to multi-stage network structures, early network DEA 

models cannot easily address conflicts between intermediate measures. For example, the links between 

stages may reduce inputs for some stages to ensure that the entire DMU is efficient [15]. To resolve 

conflicts between stages, efficiency decomposition techniques have been developed. The approaches 

developed by Kao and Hwang [17], Liang et al [16, 18] and Chen et al [19] are several good examples of 

reasonable models for intermediate measures within DMU to evaluate financial institution or supply chain 

efficiency. 

Nevertheless, these existing extensions of DEA models cannot address additional inputs and outputs in 

intermediate measures, which are very common in regional energy efficiency evaluations. For instance, 

large amounts of intermediate energy products are transferred between different regions during evaluation, 

and these transfers break the integrality of traditional DEA models and network DEA models. These 

transfers arise because energy-producing and energy-consuming processes are not necessarily completed 

within a single DMU, i.e., part of one DMU’s intermediate outputs from its energy-producing department 

may become the intermediate inputs of another DMU’s energy-consuming department instead of the 

energy-consuming department itself. Previous network DEA models describe the DMU as closed-system in 

which no additional inputs are involved in intermediate measures. Therefore, these models cannot be 

directly utilized in regional energy efficiency evaluation, in which regions are not independent from each 

other. Although problems related to intermediate outputs can be solved with methods for undesirable 

outputs (may also increase error) [27], intermediate inputs remain unconsidered. Therefore, an improved 

approach is needed for open-systems. To model a network structure in which all stages are open, we 

extended the efficiency decomposition methods by evaluating each stage individually in this study. 

The newly developed efficiency decomposition method divides each DMU into sub-DMUs and combines 

the performance of sub-DMUs by different weights. Although this adjusted efficiency decomposition 

approach partially mathematically reverts to the traditional DEA model, both structures and intermediate 

transferred are better addressed. The approach proposed in this study was further applied to evaluate the 

regional energy efficiency of China’s industry sector. As shown in Figure 1, three DEA models were 

applied. The results from a traditional DEA model, a network DEA model and an efficiency decomposition 

approach are compared and analyzed to observe improvements associated with the new approach. 

Additionally, the specific situations in the energy-producing department were evaluated for multi-stage 

structures. 

[Insert Figure 1 here] 

 

2 Network DEA models for energy efficiency evaluation 

2.1 Traditional DEA model 

The traditional DEA model introduced by Charnes et al [3] treats DMU as a “black box”. Without 



 

considering intermediate measures, it obtains a maximum ratio of weighted outputs and weighted inputs of 

one DMU under the condition that similar ratios in every DMU do not exceed unity. Recently, Fukuyama 

and Weber [20] developed a slacks-based measure for the network DEA model. In this paper, we first 

applied the slacks-based measure within the traditional “black box” DEA model to obtain an intuitive 

energy efficiency measure. 

Suppose there are n DMUj (j=1,…n), each representing the industry sector of a province in China. Let xk 

(k=1,…L) be an L-dimensional input representing multiple inputs, including the original energy input, labor 

input and capital input. Yh (h=1,…,R)
 
is an R-dimensional output representing the GDP output. The energy 

efficiency can then be measured in the traditional DEA model as follows: 
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Here, ( 1,..., )j j n =  are the intensive variables associated with DMUj. ( 1,...,L)x

ks k− =
 

and

( 1,..., )y

hs h R+ =  are slack variables associated with ( 1,..., )kjx k L=  and y ( 1,..., )hj h R= , respectively. 

The model returns only inefficiencies; thus, we define the energy efficiency from Model (1) as follows: 

Black box energy efficiency (BBE) =1
x

k

k

s

x

−

− , k for the energy input. Each DMU reaches efficiency when 

BBE equals 1 and is considered inefficient if BBE is less than 1. 

Within DMUs, the properties of energy utilization depend on the industrial department. Specifically, energy 

inputs in the energy-producing department can be divided into two parts: energy for final consumption and 

energy as raw material for conversion. Figure 2 shows the energy flow in the industry sector. To describe 

the entire industry as a “black box”, we utilized all energies that flow into stage 1 as energy inputs, the total 

number of employee and capital stock of the industry sector as labor inputs and capital inputs, and the gross 

industrial output values as outputs. 

[Insert Figure 2 here] 

 

At the national level, if we ignore the intermediate energy input/output and omit the difference between two 

departments as shown in Figure 2, the “black box” is appropriate because horizontal comparisons are 

neglected and provinces can be treated as sub-DMUs within the entirety. However, this model yields bias in 

horizontal comparisons between provinces because provincial industry sectors are not independent. 

Different natural conditions and different economic development statuses result in different industrial 

structures. In general, the energy-consuming department tends to yield higher economic returns than the 

energy-producing department. Because the gross industrial output values are the outputs in this “black box” 

model, the energy efficiency of well-developed provinces with lower proportions of energy-producing 

departments may be overestimated. The energy utilization property is an important factor in the evaluation 



 

of industrial energy efficiency, and the network DEA model is an existing model that can describe the 

industry structure. Thus, we next applied this technique to improve provincial industrial energy efficiency 

evaluation. 

 

2.2 Network DEA model 

A multi-stage DEA or Network DEA model has been applied to evaluate the efficiency of various structures 

in industry and business sectors since Seiford and Zhu [14] first applied it to US commercial banks. These 

models have also been applied to, for example, the Turkish banking system [20], Taiwanese hotel industry 

[13] and Brazilian port system [21]. These systems share a common two-stage structure within the industry 

sector evaluated in this study. The two-stage structure divides the DMU into two sub-DMUs in which each 

sub-DMU consumes inputs to yield outputs. In addition, the first sub-DMU consumes exogenous inputs, 

and the second sub-DMU consumes outputs originate from the first sub-DMU. Thus, the performances of 

both sub-DMUs can first be separately evaluated before evaluating the comprehensive performance of the 

entire system (whole DMU) based on adjusting the importance of its sub-DMUs. In the industry sector 

examined herein, the sub-stages (sub-DMUs) were defined due to energy properties as shown in Figure 3. 

The energy-producing department and energy-consuming department were identified as sub-stage 1 and 

sub-stage 2, respectively. 

[Insert Figure 3 here] 

 

The network DEA model to measure energy efficiency is then represented as follows: 
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In Model (2), ztj (t=1,…,M) is an M-dimensional vector that represents the intermediate products (energy 

consumed in stage 2), including secondary energy and primary energy (this part of primary energy is not 

converted into secondary energy in stage 1 but directly consumed in stage 2). In this study, M equals 1 

because all energy terms are converted into standard units (coal equivalent) and combined.
1

j  and 
2

j  

(j=1,…,n) are intensity variables associated with stage 1 and stage 2, respectively. The energy efficiency 

measured by the network model is unchanged compared with the black box model: Network energy 



 

efficiency (NEE) = 1
x

k

k

s

x

−

− , k for energy input. 

By introducing restrictions on intermediate activities shown in Model (2), the network DEA model 

improves the process-specific guidance to manage DMUs provided by the traditional “black box” model. 

However, conflicts may arise between stages from intermediate measures when assessing full-scale 

efficiencies is easier but access to specific data is lacking. For instance, for a province with low efficiency 

in sub-stage 1 and high efficiency in sub-stage 2, the network DEA model needs to balance the performance 

of sub-DMUs to ensure the overall efficiency of the DMU. Thus, it may require sub-stage 1 to reduce its 

inputs to increase the efficiency. Therefore, changes in the outputs from sub stage 1 may decrease the 

efficiency of sub-stage 2. In other words, provinces with equal or similar efficiencies in sub-stage 1 and 

sub-stage 2 may have higher network energy efficiencies than provinces with large different efficiencies in 

sub-stage 1 and sub-stage 2. 

Intermediate measure conflicts between sub-DMUs are not the only disadvantage of the original network 

DEA model. The original network model places a strict requirement on the system: the second sub-stage 

should not have independent inputs (i.e., inputs that are not from the first sub-stage itself but are from other 

DMU). Such closed systems only exist if the inputs for the first stage represent all inputs for the entire 

system. However, industry sectors are usually open systems, and the second sub-stages of these systems 

have unique independent inputs. Thus, the original network model may introduce bias to the evaluation of 

regional industrial energy efficiency. For instance, the electricity production from one province may be the 

primary supplement of a large area. In other words, as shown in Figure 4, the electricity supplier’s outputs 

(secondary electricity generation) from stage 1 become inputs for stage 2 of other provinces in the 

intermediate measure. If the original network model is applied to such a system, the supplier’s performance 

of stage 1 will be underestimated because large inputs flow into stage 1 and few outputs flow out to its own 

stage 2. On the contrary, the performance of stage 2 in the other provinces will be overestimated when few 

inputs flow from its own stage 1 and large outputs flow out. 

[Insert Figure 4 here] 

 

Interactions between DMUs and conflicts between sub-DMUs are common in industrial energy-producing 

and energy-consuming processes. Thus, a specific energy efficiency decomposition approach was 

introduced to improve traditional “black box” DEA model and original network DEA model and avoid 

large biases due to these two aspects. 

 

2.3 Adjusted efficiency decomposition approach 

The efficiency decomposition approach was first introduced by Kao and Hwang [17]. The difference 

between previous DEA models and the efficiency decomposition approach is that the sub-DMUs are treated 

independently in the latter, which allows each sub-DMU to have exogenous inputs and to produce final 

outputs. Therefore, energy outputs in sub-stage 1 that are exported to other provinces can be defined as part 

of the final outputs of the entire industry. In addition, Golany et al. [22] demonstrated the availability for 

systems in which sub-DMUs share resources. Thus, energy flow in each provincial industry sector can be 

well described by the efficiency decomposition approach, as shown in Figure 5. The exogenous inputs of 

sub-stage 2, including unprocessed primary energy inputs and secondary energy inputs from other 



 

provinces, can be distinguished from the total energy inputs of sub-stage 2. The intermediate outputs of 

stage 1 that are exported to other provinces can be eliminated in the evaluation of sub-stage 2. 

[Insert Figure 5 here] 

 

In Kao and Hwang’s model [17], the weights of intermediate measures are assumed to be same for 

sub-DMUs. However, to evaluate the industry sector, the energy utilization processes in different 

departments differ among China’s 30 provinces from the perspective of multi-stage energy efficiency 

evaluation. If the weight associated with the intermediate measure is the same as that in Kao and Hwang’s 

model, the independent application of a traditional “black box” model to each sub-DMU and the 

application of a network DEA model will produce the same results [19]. Thus, we directly applied a 

slacks-based traditional “black box” model to sub-stage 1 and sub-stage 2 and then assembled the 

efficiencies by selecting appropriate weights. The weight of a specific sub-stage is the proportions of its 

energy inputs in the total energy consumption of the entire industry sector. Labor inputs and capital inputs 

are divided into 2 parts each according to the consumptions in the energy-producing and energy-consuming 

departments. The following equation shows the adjusting energy efficiency measure of the efficiency 

decomposition approach: Adjusted energy efficiency (AEE) = 

1 21 2

1 1 2 2 1 2
1

x x

k k k k

k k k k k k

s x s x

x x x x x x

− −

− −
+ +

, k for energy 

input, in which 1

kx  and 2

kx  (k=1,…,L) are energy inputs of sub-stage 1 and sub-stage 2, respectively. 

To obtain more specific energy efficiency evaluation results for different departments within the industry 

sector, the efficiency decomposition for a specific sub-stage is needed. Due to the limited availability of 

accurate data, we applied the proposed method only to sub-stage 1 to demonstrate the effectiveness of the 

adjusted efficiency decomposition in this study. The energy flow in this sub-stage can be additionally 

separated into three parts: exploitation, processing and electricity generation, which are named sub-stage 

1.1, sub-stage 1.2 and sub-stage 1.3 in this study, respectively. 

The inner structure in sub-stage 1 is described by a more complicated relationship, which is further 

illustrated in Figure 6. The net energy inputs of the 3 sub-stages are the same as the total energy inputs of 

stage 1 in the network model. The energy inputs of stage 1.1 are consistent with the local primary energy 

and imported primary energy from other provinces. The energy outputs of stage 1.1 provide parts of the 

secondary energy outputs of stage 1 as well as the secondary energy inputs of stage 1.2 and stage 1.3. For 

stage 1.2, the energy inputs are the local primary energy inputs, imported primary energy inputs and 

secondary energy inputs from stage 1.1; energy outputs are the secondary energy for stage 1.3 and energy 

outputs of stage 1. The energy inputs of stage 1.3 originate from all previous energy resources, including 

the local and imported primary energy and secondary energy from stage 1.1 and stage 1.2. The energy 

outputs from stage 1.3 directly flow out of stage 1. The net energy outputs from the 3 sub-stages (sum of 

their total output minus the parts that have been consumed in stage 1) become the intermediate output of 

stage 1 in the network model. 

[Insert Figure 6 here] 

 

The energy efficiency of sub-stage 1 is defined similarly to the defined energy efficiency of the entire 

industry sector, and the weights associated with sub-stages 1.1 to 1.3 are calculated based on the the ratio of 



 

its energy inputs to the sum of the energy inputs of all three sub-stages, as shown in the following equation, 

which is additionally defined as the adjusted energy efficiency of sub stage 1: 

1 2 31 2 3

1 1 1 1 1 1

1 1 2 3 2 1 2 3 1 1 2 3

1 1 1 1 1 1 1 1 1 1 1 1

1
x x x

k k k k k k

k k k k k k k k k k k k

s x s x s x

x x x x x x x x x x x x

− − −

− − −
+ + + + + +

. 

At last, we define the difference between the adjusted energy efficiency measure and the traditional “black 

box” efficiency measure as the evaluation bias (efficiency overestimation or underestimation) caused by 

not considering the inner structure of the energy utilization process. 

 

3 Empirical result and comparison 

3.1 Input and output data 

The models and approach proposed in this study were further applied to evaluate the regional energy 

efficiency of the industry sectors of China’s 30 provinces. Because specific data on the energy consumption 

and economic output of energy-producing and energy-consuming departments are only available for the 

year 2008 from the second National Economic Census, the empirical analysis in this study was restricted to 

this year. The third National Economic Census was conducted in 2014, which is more recent, but the 

specific date that we need for multi-stage industrial energy efficiency evaluations has not yet been released. 

Furthermore, this study primarily aimed to propose a more appropriate network DEA-based evaluation 

model for energy efficiency evaluation and decomposition while considering different energy properties in 

different energy utilization department. Therefore, we expect that the empirical analysis of one year will be 

acceptable to demonstrate the effectiveness of this model given the current lack of recent data. Tibet, Hong 

Kong, Macau and Taiwan are excluded from the calculation because a lack of data. 

In this section, we use the phrase “energy input” to represent the local primary and secondary energy input 

plus the secondary energy import from other provinces, and we use the phrase “energy output” to represent 

the local secondary energy outputs plus the secondary energy export to other provinces. The DEA model 

for each province contains three inputs, including non-energy inputs and energy inputs. We used labor and 

capital as two-dimensional non-energy inputs in units of ten thousand employees and billions of Yuan 

(Chinese currency), respectively. Energy inputs in ten thousand tons of coal equivalent are used as 

one-dimensional energy inputs. The gross industrial output value is utilized as one-dimensional output, 

which is also given in billions of Yuan. 

In the traditional “black box” model, we set the energy inputs for the energy-producing department to be 

the initial energy input for the entire industry sector. The total labor and capital inputs for both sub-stages 1 

and 2 are utilized as non-energy inputs. In the network model, the intermediate product is the energy 

consumption of stage 2. We ignore the intermediate effects of non-energy factors and set ztj to be a 

one-dimensional vector that only includes energy. In the adjusted efficiency decomposition approach, local 

primary and secondary energy input plus the secondary energy import are utilized as energy inputs of 

sub-stages 1 and 2 (note that their sum does not equal the energy input in the black box model); labor and 

capital inputs are divided into two parts for stages 1 and 2; and the separated gross industrial output of stage 

1 and stage 2 were utilized as output of each stage. In addition, three DEA models that measure the 

efficiencies of sub stages 1.1 to 1.3 are relatively uncorrelated to the models of the whole industry sector. 

The data are the joint subsets of the data we used above. We excluded the relevance of industry processes to 

determine the development potentials in manufacturing processes. Input vectors between sub-stages as well 

as output vectors between sub-stages are relatively independent. We used the actual energy inputs, 



 

non-energy inputs and outputs from the statistical data of each sub-stage. 

 

3.2 Results 

We first applied the traditional “black box” model, the network model, and the adjusted efficiency 

decomposition approach to evaluate China’s provincial industrial energy efficiency and obtained three sets 

of efficiency results, as shown in Table 1. The adjusted efficiency decomposition approach was then 

additionally applied to evaluate the efficiency of sub-stage 1. 

[Insert Table 1 here] 

 

The traditional “black box” model is first considered. The regional differences are obvious, as shown in 

Figure 7. In China’s northern provinces, the industrial energy efficiencies tend to be very low (below 0.5), 

whereas the energy efficiencies in China’s eastern provinces are much closer to 1 (efficient). This 

efficiency distribution appears to be a projection of China’s economic development. Well-developed 

provinces have higher industrial energy efficiency and vice versa. However, in actuality, the productions of 

fossil fuel exceed the consumptions of it in China’s northern provinces, while the consumptions of fossil 

fuel exceed the productions of it in China’s eastern provinces. The energy efficiency is higher in provinces 

that have smaller proportions of energy-producing departments (stage 1) and larger proportions of 

energy-consuming departments (stage 2). 

[Insert Figure 7 here] 

 

We then applied the original network model. As shown in Figure 8, the efficiencies obtained by the network 

model significantly differed from those illustrated in Figure 7. Although the industrial structure is 

considered, some of the results are clearly inaccurate. For example, Shanxi is one of China’s most 

well-developed regions and the largest energy-importing region, however its energy efficiency score is only 

0.222 based on the traditional “black box” model and 0.291 based on the network model. Beijing is the 

capital city and features advanced technology and more efficient industry structure than its surrounding 

regions. However, the network model assigns a low efficiency score of 0.320 to this city. 

[Insert Figure 8 here] 

 

To better evaluate regional energy efficiency with the consideration of industry structures, energy transfer 

between provinces and intermediate processes, we used the adjusted efficiency decomposition approach to 

independently evaluate each sub-stage in the industry sector and then combined the results according to the 

energy consumption proportion of each stage. The evaluation results of previous models are generally 

modified and updated using this decomposition analysis. For the obviously underestimated province, 

Shanxi, the adjusted energy efficiency is 0.647, which is much higher than the previously obtained 

efficiency. For energy-importing provinces or cities such as Beijing, Tianjin, Shanghai and Guangdong, the 

low efficiencies proposed by the network model increase to more reasonable ranges. For energy-exporting 

provinces such as Ningxia, Qinghai and Inner Mongolia, the energy efficiencies reflect a compromise 

between the “black box” energy efficiencies and network energy efficiencies. 

For sub-stage 1, Table 2 lists the specific energy efficiencies of the energy exploitation department, the 



 

energy process department, and electricity generation department. The overall energy efficiency of the 

entire energy-producing department is also listed in Table 2. The overall energy efficiencies are lower than 

the previously identified adjusted efficiencies from the decomposition method. This finding may be due to 

the smaller subdivisions, which make the result more relevant to manufacturing processes. For example, the 

energy exploitation department in Beijing continued to reduce its outputs in the last decade. However, some 

expenses, such as electricity consumption, were not reduced as much as the outputs in this department, 

moreover, the equipment (capital input) in this department could not be reduced in the short term. Thus, the 

energy efficiency of manufacturing process in Beijing should be relatively lower than the province that still 

has high speed growth on manufacturing industry. The process-specific evaluation proposed in this study 

effectively captured this phenomenon. Therefore, the inclusion of the inner structure of sub-stage 1 in the 

model provides insight into the energy efficiencies in sub-industry departments, which could provide more 

specific guidance for further energy efficiency improvement. 

[Insert Table 2 here] 

 

3.3 Adjusted efficiency decomposition approach vs. “black box” and network models 

Both the traditional “black box” model and network model evaluate the energy efficiency of industry 

sectors by simplifying its inner structure and omitting intermediate energy inputs and outputs. On the 

contrary, the adjusted efficiency decomposition approach modifies the overall efficiency as a weighted 

average of the process-specific energy utilization efficiencies of sub-stages. Therefore, differences between 

the results of the three models directly depend on how similar the modeling system is to the real industry 

system and how the weights are selected in the adjusted efficiency decomposition approach. For China’s 

industrial energy efficiency evaluation, the adjusted efficiency decomposition approach helps to address the 

interprovincial energy import and export and the different energy properties associated with 

energy-producing and energy-consuming processes in the industry sector. 

The traditional “black box” model ignores both of the above issues. It treats every provincial industry 

sector as a closed system, and the difference in energy properties of different sub-industry departments may 

consequently lead to efficiency evaluation bias. The above evaluation results clearly show that provinces 

with well-developed energy-consuming departments have higher energy efficiencies. Most of these 

provinces rely on importing large amounts of secondary energy from other provinces. In other words, based 

on the “black box” modeling perspective, these provinces consume fewer inputs but produce higher outputs 

compared than other provinces because they mainly consume secondary energy imported from other 

provinces. In addition, because the “black box” model also treats industries as closed systems, the imported 

secondary energy is ignored, which leads the “black box” energy efficiency evaluation is more likely to be 

an evaluation of the energy-consuming department. 

Although the network model was developed to improve the traditional “black box” model by considering 

industrial structure, its evaluation results continue to have some disadvantages. Specifically, the network 

model provides more reasonable results than the traditional “black box” model for some provinces while 

giving unreasonable results for other provinces. This shortage may be because the network model was also 

originally designed to describe a closed system. Energy import and export activities markedly differ 

between provinces in China, and the original network model consequently cannot provide more appropriate 

evaluation results when given that the provincial industry sector is an open system and both intermediate 

energy inputs/outputs and independent energy inputs should be considered. 

Considering the above modeling shortages, the adjusted efficiency decomposition approach may be a more 

app:ds:import
app:ds:and
app:ds:export


 

appropriate choice. The separated sub-DMUs in the adjusted efficiency decomposition address the problem 

of intermediate energy import and export between provinces. For each sub-DMU, the inputs and outputs 

are exactly equal to the energy consumption and energy production in the corresponding real industry 

department, respectively. Moreover, all intermediate measures are considered. However, if we apply the 

original efficiency decomposition method to a situation in which all sub-DMUs share the same weight, the 

bias introduced by different energy properties may remain. Thus, different weights are assigned to different 

sub-DMUs in the adjusted efficiency decomposition method. Weights are determined according to the 

amount of energy that is consumed or converted by sub-DMUs. Note that these weights also avoid 

increases in bias due to energy “import and export” between provinces. For example, if a province strongly 

depends on the energy-producing department, the original DEA model and the network DEA model will 

underestimate efficiency because the province is an “energy exporter” with a high energy input for stage 1 

and low output in stage 2. In addition, the overall efficiency obtained by the adjusted efficiency 

decomposition provides more objective results because it combines a higher weighted energy efficiency in 

stage 1 and a lower weighted energy efficiency in stage 2. In other words, the adjusted efficiency 

decomposition gives more objective results via the process-specific evaluation for both “energy exporters” 

and “energy importers”. Note that the adjusted efficiency decomposition approach also tends to produce 

high efficiencies for well-developed provinces in which the black box energy efficiencies are also high. The 

difference between these two efficiency measures is that the traditional “black box” model obtains these 

high efficiencies because it ignores the energy imports consumed in stage 2, whereas the adjusted 

efficiency decomposition yields high efficiencies for both stage 1 and stage 2. This finding demonstrates 

that although well-developed provinces do not satisfy their own energy demands, more advanced 

techniques and management of these provinces maintain the energy efficiency of their energy-producing 

departments. 

[Insert Figure 9 here] 

 

The bias shown in Table 1 reflects the differences between the “black box” energy efficiency and the 

adjusted energy efficiency. For the first aspect of improvements, energy transfer between provinces, the 

bias shows the correction of energy efficiencies of “energy exporters”. As shown in Figure 9, the traditional 

“black box” model underestimates the energy efficiency for primary “energy exporters” (provinces with 

negative net energy transfer between provinces), while the adjusted efficiency decomposition model 

provided a correction for seven “energy exporters”. The second improvement is for different energy 

properties and different relying on industrial departments. Table 3 lists 10 provinces that are highly reliant 

on energy-producing departments. Specifically, highly relying on stage 1 may lead to high bias in the 

traditional “black box” model. 

[Insert Table 3 here] 

 

4 Conclusion 

The traditional “black box” DEA model has been applied to evaluate the energy efficiency of Chinese 

industry in previous studies. This paper aimed to improve the evaluation by eliminating the impact of 

different energy properties, the conflicts between stages, and the previously neglected intermediate energy 

inputs and outputs in the industry sector. Considering the structure of the industry sector and the energy 

intermediate transfer in it, this study proposes a more appropriate model, the adjusted efficiency 

decomposition approach, for industrial energy efficiency evaluation. The evaluation relies on the separation 



 

of industry departments based on the properties and functions of their energy utilization processes. The 

energy efficiency of Chinese industry in 2008 was evaluated using the proposed model as an example. The 

difference between the evaluation results of the traditional “black box” DEA and the adjusted efficiency 

decomposition approach demonstrates the improvement provided by our new approach. In the traditional 

model, differences in energy properties in different energy departments give rise to large bias when the 

inner structure of the industry sector is ignored. In our adjusted efficiency decomposition approach, the 

efficiency evaluation result is more objective because it considers differences in energy utilization 

properties (final consumption or intermediate conversion) in different industry departments and energy 

transfers between different regions. The empirical analysis shows that the adjusted efficiency 

decomposition approach assigns more reasonable energy efficiencies to both of the “energy exporter” 

regions in China, i.e., Shanxi and Xinjiang. In addition, the adjusted efficiency decomposition approach 

was demonstrated to be applicable for evaluating the energy efficiency of specific sub-industry sectors and 

can consequently provide more process-specific guidance for further efficiency improvement. 
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Tables and Figures 

 

Table 1 Provincial industrial energy efficiency obtained by three models and bias between BBE and 

AEE 

Provinces  
Black box energy 

efficiency 

Network energy 

efficiency 

Adjusted energy efficiency from efficiency 

decomposition approach 
Bias 

Beijing 0.967  0.320  1.000  0.033 

Tianjin 1.000  0.416  1.000  0.000 

Hebei 0.467  1.000  0.886  0.419 

Shanxi 0.222  0.291  0.647  0.425 

Inner Mongolia 0.163  1.000  0.509  0.346 

Liaoning 0.499  0.641  0.631  0.132 

Jilin 0.613  0.636  0.627  0.014 

Heilongjiang 0.322  0.307  0.789  0.466 

Shanghai 1.000  0.252  1.000  0.000 

Jiangsu 1.000  0.839  0.905  -0.095 

Zhejiang 0.978  0.497  0.965  -0.014 

Anhui 0.584  0.622  0.670  0.085 

Fujian 0.915  0.380  0.816  -0.099 

Jiangxi 0.857  0.402  0.811  -0.046 

Shandong 1.000  1.000  1.000  0.000 

Henan 0.466  0.688  0.883  0.417 

Hubei 1.000  0.878  0.688  -0.312 

Hunan 0.801  0.784  0.598  -0.202 

Guangdong 1.000  0.496  1.000  0.000 

Guangxi 1.000  1.000  0.515  -0.485 

Hainan 1.000  1.000  1.000  0.000 

Chongqing 0.882  0.537  0.727  -0.155 

Sichuan 0.796  1.000  0.551  -0.245 

Guizhou 0.332  0.624  0.475  0.143 

Yunnan 0.683  1.000  0.511  -0.172 

Shaanxi 0.442  0.309  0.818  0.376 

Gansu 0.426  0.461  0.531  0.106 

Qinghai 0.913  1.000  1.000  0.087 

Ningxia 0.328  1.000  0.757  0.429 

Xinjiang 0.275  0.516  0.693  0.418 

 

  



 

 

Table 2 Energy efficiency of sub stage 1 obtained by efficiency decomposition approach 

Provinces 

Stage 1.1 

Efficiency of energy 

exploitation department 

Stage 1.2 

Efficiency of 

energy processing 

department 

Stage 1.3 

Efficiency of 

electricity generation 

department 

Overall efficiency 

of stage 1 

Beijing 0.188 0.365 0.531 0.436 

Tianjin 1.000 0.596 0.571 0.615 

Hebei 0.374 0.939 0.411 0.468 

Shanxi 1.000 1.000 0.419 0.760 

Inner Mongolia 1.000 1.000 0.738 0.811 

Liaoning 0.295 1.000 0.620 0.649 

Jilin 0.465 1.000 0.603 0.588 

Heilongjiang 0.506 0.779 0.603 0.608 

Shanghai 1.000 0.327 0.882 0.630 

Jiangsu 0.468 1.000 1.000 0.981 

Zhejiang 0.593 1.000 0.488 0.534 

Anhui 0.992 1.000 0.693 0.756 

Fujian 1.000 1.000 0.900 0.903 

Jiangxi 0.414 0.747 0.930 0.801 

Shandong 0.454 0.724 0.870 0.764 

Henan 0.595 1.000 0.535 0.582 

Hubei 0.181 0.977 1.000 0.969 

Hunan 0.842 0.952 1.000 0.974 

Guangdong 1.000 0.336 1.000 0.876 

Guangxi 1.000 1.000 0.952 0.954 

Hainan 1.000 1.000 0.783 0.852 

Chongqing 0.676 1.000 1.000 0.908 

Sichuan 0.542 0.653 1.000 0.768 

Guizhou 1.000 1.000 0.816 0.843 

Yunnan 1.000 0.894 0.934 0.935 

Shaanxi 1.000 0.809 0.732 0.792 

Gansu 1.000 0.559 1.000 0.854 

Qinghai 0.462 1.000 1.000 0.715 

Ningxia 0.701 0.897 0.794 0.783 

Xinjiang 0.734 0.657 0.758 0.723 

 

  



 

 

Table 3 Bias of provinces with high relying on stage 1 

Provinces Bias Energy utilization percentage of stage 1 

Hainan 0.000  44% 

Qinghai 0.087  31% 

Gansu 0.106  38% 

Guizhou 0.143  33% 

Inner Mongolia 0.346  30% 

Shaanxi 0.376  42% 

Xinjiang 0.418  59% 

Shanxi 0.425  54% 

Ningxia 0.429  37% 

Heilongjiang 0.466  50% 

 

  



 

 

 

Figure 1 Three approaches for energy efficiency evaluation 

 

 

 

Figure 2 Energy flow in industry sector 

 

 

 

Figure 3 Structures of energy flow in “black box” model and network model 
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Figure 4 Example of intermediate measure of electricity flow 

 

 

 

Figure 5 Structures of energy flow in network model and adjusted efficiency composition approach 
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Figure 6 Inner energy flow of sub stage 1 

 

 

Figure 7 Regional energy efficiency obtained from “black box” model 
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Figure 8 Regional energy efficiency obtained from network model  
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Figure 9 Net energy transfers between provinces (in 104 tons of coal equivalent) and bias between 

BBE and AEE 

 


