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Abstract: In the present study, a Mix-encoding Particle Swarm Optimization and Radial Basis Function 

(MPSO-RBF) network-based energy demand forecasting model is proposed and appliedto forecast China’s 

energy consumption until 2020. The energy demand isanalyzed for the period from 1980 to 2009 based on 

GDP, population, proportion of industry in GDP, urbanization rate, and share of coal energy. The results 

reveal that the proposed MPSO-RBF based model has fewer hidden nodes andsmaller estimated errors 

compared with other ANN-based estimation models. The average annual growth of China’s energy demand 

will be 6.70%, 2.81%, and 5.08% for the period between 2010 and 2020 in three scenarios and could reach 

6.25 billion, 4.16 billion, and 5.29 billion tons coal equivalentin 2020.Regardless of future scenarios, 

China's energy efficiency in 2020 will increase by more than 30% compared with 2009. 

 

Keywords: China’s energy demand; forecasting；Radial Basis Function (RBF) neural network; energy 

intensity 

 

1. Introduction 

Worldwide energy consumption is rising sharply, owing to increasing human population, continuing 

pressure for better living standards, and emphasis on large-scale industrialization in developing countries, 

thus sustaining positive economic growth rates. As the largest developing country in the world, China’s 

economy and gross energy consumption have been growing rapidly for more than 60 years, especially with 

reforms and the opening up of its economy. Reports indicate that China’s gross domestic product (GDP) 
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grew by an average rate of 9.8% from 1980 to 2009[1]. Despite the 2008 global economic crisis, China’s 

GDP in 2010 remained at a high growth rate of 10.3%, and reached RMB (Chinese currency) 39.80 

trillion[2]. Meanwhile, China’s energy consumption increased from 602.8 million tce (“standard” tons coal 

equivalent) in 1980 to 3.25 billion tce in 2010, with an annual growth rate of 5.8%, an increase of 5.9% 

compared with 2009[2]. Giventhese developments, China overtook the United States as the world’s largest 

energy consumer after 2009[3]. The rapid growth energy consumption has also brought about considerable 

pressure on China’s energy supply. China became a net importer of petroleum products once again in 1993, 

and, ever since 1997, China’s energy self-reliance rate has been below 100%.Compared with developed 

countries, China’s future energy demand will keep growing at a rapid pace. Thus, accurate forecasts of 

energy demands are very important and fundamental to rational energy planningformulation. The 

estimation can guide the Chinese government during consideration of necessary actions concerning supply 

security, environmental quality, and other important aspects of formulating energy policies. 

Many studies related to energy consumption forecasts are available in the literature, which can be mainly 

classified into the following five categories: the econometric category, including time series[4-6], 

regression[7, 8], and ARMA model[9, 10],the bottom up model-LEAP[11-13], the grey forecasting 

category [14, 15], the artificial intelligence forecasting category[16-23], and the hybrid forecasting 

category[15, 24-27]. The literature is abundant and has grown steadily. A brief overview of the different 

categories of energy forecasting can be found in the review paper surveyed by Suganthia and Samuelb[28]. 

With the complexity and nonlinearity of mostenergy demand systems, the artificial intelligence forecasting 

category has becomethe most popular approach amongst thefive categories in recent years. In this category, 

Artificial Neural Networks (ANN) is one of the intelligent modelsthat can elucidate complex relationships 

between input and output patterns that would be difficult to model with conventional algorithms. Instead of 

complex rules and mathematical routines, ANN is able to learn the key information patterns within a 

multidimensional information domain. In addition, they are fault-tolerant and robust. The greatest 

advantage of a neural network is its ability to model complex nonlinear relationship without a priori 

assumptions of the nature of the relationship like a “black box”[29, 30]. 

Thus far, a number of studies focus on utilizing the ANN model to predict the national energy demand 

[20, 21, 24, 31-35], electricity load[25, 36-39] and transport energy demand[8, 22, 40] are available. 

Among these various forecasting methods, the multilayer perceptron (MLP), especially Back Propagation 

(BP) network, is the most popular. However, some dilemmas have been encountered when dealing with a 

time series forecasting problem. First, it is not easy to determine a suitable number of hidden neurons. In 



 

the above-mentioned studies, the number is mainly achieved via trial and error, which is inefficient and 

time-consuming. Second, the optimization solution could be trapped in a local optimum as training the 

weights by BP error gradient algorithm. The improper weightsmay fail to set the mapping between input 

and output variables. Finally, BP algorithms adjust weights and bias complying with a certain rule. It is thus 

impossible to adjust the structure self-adaptively in a fixed topology[41].  

This has led us to investigate the energy forecasting performance of other ANN models, such as the 

radial basis function (RBF) neural network. The RBF neural network is another three-layered feedforward 

neural network model wherethe activation function of the hidden units isdetermined by the 

distancebetweenthe input vector and a prototype vector.RBFnetwork can approach any continuous function 

with any precisionand can avoid the redundant calculation of BP network. Furthermore, it has more rapid 

calculationrate, stronger extrapolating capability and non-linear mappingfunction [42]. 

In our earlier study, a Mix-encoding Particle Swarm Optimization Radial Basis Function (MPSO-RBF) 

network has been proposed in theory[43]. However, this model has not been utilized to energy demands 

modelling. In the present study, a proper MPSO-RBF based model is proposed to forecast the energy 

demands of China in 2020 based on socio-economic indicators, such as GDP, population, economic 

structure, urbanization rate, and energy structure. China's energy efficiency in 2020 also has been estimated 

in three scenarios. 

2. Energy consumption and economic indicators of China 

Energy consumption is a function of several affecting factors, such as per capitaGDP, relative prices, 

economic structure, available technology, and lifestyles [44, 45]. Several authors have explored the 

relationship between energy consumption and certain aspects of economic development, population, 

economic structure, urbanization rate, and energy structure. Based on the availability of Chinese data, the 

present study selected GDP (economic development), annual total population, the share of industrial added 

value to GDP (indicating the economic structure), the ratio of urban population to the total population 

(urbanization rate), and the share of coal consumption from the total primary energy consumption (energy 

structure) as independent variables. 

Energy consumption and selected economic indicators are described in Fig.1. All annual data from 1980 

to 2009 were obtained from the China Statistical Yearbook (1980–2010) and the China Statistical Energy 

Yearbook (1980–2010), compiled by the National Bureau of Statistics (NBS). 



 

From 1980 to 2009, the annual growth rate of China's primary energy consumption was 5.8% while the 

economic growth was 9.8% (this calculation factored in constant prices in 1990), showing an annual 

average energy consumption elasticity coefficient of 0.59, which basically achieves the goal "ensure 

economic output with energy double quadruple." After 2002, however, the growth rate accelerated. 

Between 2002and2009,with the annual growth rate at 9.3%, energy consumption nearly doubled in a short 

span of seven years, during which the elasticity coefficients of 2003 and 2004 exceeded 1; this period is 

considered to be the fastest growth period of energy consumptionover the last 30 years, as shown in Fig. 1. 

Due to the difference of the energy consumption index in different industries, the change of industrial 

structure and industrial productivity is bound to influence energy consumption. With industrial output value 

accounting for the proportion of GDP in 1980–2009, Chinese industry proportion has been hovering 

between 38%–42% (see Fig.1). In recent years, with China's gradual transformation of its economic 

development model, a large number of enterprises with high energy consumption and high emission levels 

have been shut down. Industrial output value accounted for the proportion of GDP began a slow decline 

from 2006, dropping from 41.76% in 2005 to 39.72% in 2009. 

Industrialization and urbanization always complement each other. Since the Chinese economy has grown 

rapidly over the last 30 years, the level of Chinese urbanization has also increased. China is in the middle 

stages of urbanization; therefore, the city population and rate of urbanization have seen significant 

increases. As shown in Fig.1, the proportion of urban residents in China rose from 19.4% in 1980 to 46.6% 

in 2009, with an average annual growth rate of 3.1%. However, a large gap in the urbanization rate 

continues to exist, with middle-income countries experiencing an average level of 61% and high-income 

countries experiencing a 78% growth rate[46]. China’s current levels of urbanization are expected to 

increase its total energy consumption. 

Population growth is an important factor that drives the amount and type of energy use. China is the most 

populous country in the world, with a population of 1.33 billion in 2009. The country's one-child policy of 

one couplehas had a significant impact on its energy use, with China experiencing an average population 

growth rate of 1.1%from 1980 to 2009, whereas theannual population growthrate peaked at above 1.4% 

during the period between1985 and 1990.The growth rate in1988 reached a maximum of 1.58% and after 

that growth declined year by year, showing only 0.51% in 2009. In the error correction model, the elastic 

coefficient of energy consumption and population was only 0.46, that is to say with the population growing 

at 1%, energy consumption only increased 0.46% [47]. However, because of China's large population base, 

small changes in population can cause great changes in energy demand, bringingeven greater pressure on 



 

energy resources. 

The characteristics of China’s energy endowment include rich coal, less oil, and gas shortage, making 

China one of the world's few remainingcountries relying on coal for primary energy consumption. From 

1980 to 2009, the proportion of coal consumption in primary energy was maintained at over 70%, except 

for a few years in 2000 to 2004, when it was just slightly lower than 70%. Furthermore, from 1984 to 1992, 

the proportion exceeded 75%, increasing up to 76.2%(see Fig.1). In 2009, the proportion of coal 

consumption accounted for 70.4% of total primary energy used, which is much higher than the world 

average of 29.1%[48]. 

 

 

 
Fig. 1.Energy consumption and selected economic indicators (1980–2009). 

3. Methodology 

3.1 The study framework 

An energy system is a complex nonlinear system; its development and evolution are affected and 

restricted by a variety of factors, such as the internal sub-system and external environment. To better 

establish the complex non-linear relationship between energy consumption and its factors, the present study 

takes advantage of non-linear mapping capabilities of RBF networks in complex systems modeling and the 

global intelligence capability of PSO optimization algorithm to form a new MPSO-RBF prediction model. 

The research framework is depicted in Fig.2. First, normalized historical data are divided into two parts, the 

training set and the test set, which are utilized to train RBF network parameters (e.g., network structure, 
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weights) and test the model prediction performance, respectively. Second, the training set is inputted into 

the RBF network in random order, errors E are calculated between the outputs of the network and the 

actual values,and network’s structure and weights are optimized by MPSO-BP algorithm. Third, test set is 

inputted into the optimized RBF network, which meets the maximum number of evolution generations or

E , and the mean absolute percentage forecast error (MAPE) of the test set is computed. Finally, 

different scenarios are set according to the historical trends of independent variables and the Chinese 

government's planning scheme. The related scenario data are inputtedinto the validated RBF and China’s 

energy demand from 2010 to 2020 are predicted. 

In Fig. 2, )(iy  and )(ˆ iy  are the observed and estimated energy demands of the i -th training data, 

respectively, and 
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Fig. 2. 

Diagram of the proposed MPSO-RBF ANN energy estimation model 

3.2The MPSO-RBF forecasting Model 

The MPSO-RBF network model, whichthe topology structure and parameters are simultaneous 



 

optimized by a mix-encoding particle swarm optimization and BP algorithm (MPSO-BP)[43].To solve the 

problem of determining the proper structure and the optimum parameters, a hybridMPSO-BP algorithm is 

proposed. In the hybrid algorithm,every particle structure consists of both binary and real parts. In the 

binary part, if the value coded in binary code is 1, the neuron is selected. However, if the value is “0,” the 

neuron is unselected. While thereal part are corresponding to the center ic , the width i , and the weight 

iw  of the RBF networks. The model is depicted in Fig.3. 
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Fig.3. The structure of MPSO-RBF model 

The hybridMPSO-BP algorithmis briefly described as the following:First, the structure of the RBF 

network, namely the number of hidden nodes, and the parameters are optimized by MPSO.Second, the BP 

algorithm, as a fast local gradient guide searcher, is applied to tune the real parts of particles corresponding 

to centers, width and weightsof a certain network structure. Finally, the parameters obtained by BP are set 

against the corresponding particle and the next iteration is performed. Furthermore, a special fitness 

function is introduced to ensure accuracy with few centers. 

More details are described and illustrated by the flowchart in Fig. 4.In Fig.4 1d  and 2d  are the length 

of binary part and real part of each particle. sizepop_ is the particles’ population size. genmax_ and kmax_  

are the max iterations of MPSO and BP algorithms ,respectively.  isa restriction factor. 1c and 2c  denote 

the cognitive and the social parameters,respectively. 1rand and 2rand  are random numbers distributed 

uniformly in the interval ]1,0[ .
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Detailed descriptions of the MPSO-RBF network and BP training algorithm for RBF be found in 

references [43]. 
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Fig. 4. The flowchart of the MPSO-BP algorithm. 



 

4. Modeling results 

Common parameters for the MPSO-RBF model were as follows: Population size 40_ =sizepop ; 

generation number 150max_ =gen ; 100max_ =k .The max number of RBF is 10 (i.e., 101=d ). Five 

selected economic indicators were applied to forecast the primary energy demand in the present study. 

Therefore, there were 5 input nodes and 1 neuron in the output layer, and the length of every particle was 

80. The initial particle positions belonged to ]5,5[− . Historical data of China’s energy and corresponding 

selected economicindicatorsfrom 1980 to 2009 were divided into the training set, 1980–2004, and the test 

set, 2005–2009. The structure and parameters optimized by the proposed MPS-BP algorithm werebased on 

10 independent runs under different random seeds. After the algorithm reached the stop criterion, the best 

structure was 5-4-1, indicating thatthere are only four radial basis nodes in the hidden layers. The fitness 

values against iteration and the selected RBF numbers against iteration are shown in Figs.5and 6, 

respectively. The test MAPE is 0.78% and the NRMSE is 0.0251. A comparison between actual and 

estimated values of energy consumption (training and test data) is shown in Fig.7. Fig.8shows the MAPE of 

simulation by the MPSO-RBF model. 

 

Fig.5. Fitness values against iteration               Fig.6. Selected RBF numbers against iteration 
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Fig. 7. Comparison between actual and estimated values of energy consumption (1980–2009) 

 

Fig. 8.Trends of percentages of estimated errors of forecasting models (1980–2009) 

Table 1 lists the comparison of structure and MAPE in the present study with other authors. Results 

indicate that the proposed MPSO-RBF model has a simpler network structure and higher estimating 

precision than other ANN models.  
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The comparison of structure and MAPEa in the present study with other authors 

Authors ANN Structure Training algorithms Target/Country MAPE(%) 

Limanond et al [8] 
Four layers MLP 

 (5-5-5-1) 
Back-propagation 

ransport energy-Thailand 0.0263b 

Ekonomou[20] 
Four layers MLP  

(4-20-17-1) 
Levenberg-Marquardt 

Total energy-Greece 3.52 

Azadeh et al.[24] 
Four layers MLP 

(5-3-3-1) 

Resilient propagation and 

momentum and weight decay 

Industrial sectors-Iran 0.99 

Sözen and Arcaklioglu[32] 
Three layers BP 

 (2-4-1) 
Levenberg-Marquardt  

Net 

electricityenergy-Turkey 

0.93 

Pao [34] 
Three layers BP 

(2-5-1) 

Back-propagation and 

momentum 

Electricity energy-Taiwan 2.56 

Coşkun [37] 
Three layers BP  

(4-4-4) 

Back-propagation and 

momentum 

Four-sector net electricity 

energy-Turkey 

8.17 

Murat Ceylan[40] 
Three layers BP 

(3-14-1) 
Back-propagation 

Transport energy-Turkey 13.01 

The present study 
Three layers RBF 

(5-4-1) 
MPSO-BP algorithm 

Total energy-China 0.78/0.025 b 

aAverage relative to the test period of each model 

bNormalized root mean square error(NRMSE) of the test data. 

 

From Table 1, based on historical data, the proposed MPSO-RBF model properly establishedthe 

non-linear mapping between energy consumption and five factors that affect it, including economic growth, 

population growth, economic structure,urbanization rate, and share of coal energy. Thus, the future energy 

consumption of China can be adequately estimated by the model, and the forecasting results may guide the 

Chinese government in implementing future energy policies. 

5. Future scenarios estimations  

5.1. Scenario settings 

To predict future energy demand andguide the energy policy making, three scenarios are analyzed in the 

present study. ScenarioA,business-as-usualscenario, is a case of high economic growth, where past trends 

continue in the future and no new policies for energy saving and environmental protection are implemented. 

Scenario Bis mostly based on the 12th Five-Year Plan of China, which reflects a shift toward a more 

sustainable energy pathway realized by policies and measures aimed at improving energy efficiency and 

reducing energy consumption. Scenario C is a trade-off between Scenarios A and B. Different scenario 



 

settings are shown in Table 2. Table 3 summarizes the projected independent variables in 2015and 2020 in 

thedifferent scenarios. All of theses scenarios are primarilygoverned by five factors, namely, economic 

growth, population growth, economic structure, urbanization rate,and share of coal energy. 

Different scenario settings are shown in Table 2. Table 3 summarizes the projected independent variables 

in 2015and 2020 in thedifferent scenarios. 

Table 2 

Scenario settings  

Scenarios Years 
GDP growth 

 rate peryear 

Population 

growth rate 

peryear 

Share of industry 

 in GDP growth rate 

peryear 

Urbanization 

growth rate 

 peryear 

Coal share  

growth rate  

peryear 

A 
2010–2015 9.80% 0.60% -0.20% 2.00% -0.14% 

2016–2020 9.00% 0.50% -0.25% 1.80% -0.20% 

B 

2010–2015 7.00% 0.50% -1.32% 1.63% -0.70% 

2016–2020 6.00% 0.40% -1.50% 1.50% -0.80% 

C 

2010–2015 9.00% 0.55% -0.60% 1.80% -0.42% 

2016–2020 8.00% 0.45% -0.90% 1.60% -0.50% 

 

Table 3 

Index values by 2015 and 2020 in thedifferent scenarios 

Affecting factors Years Scenario A Scenario B Scenario C 

GDP (million Yuan) 
2015 21488 18971 20812 

2020 33063 25388 30579 

Population (million persons) 
2015 1383.5 1375.3 1379.4 

2020 1418.6 1403.0 1410.7 

Share of industry in GDP (%) 
2015 39.20 36.70 38.30 

2020 38.60 34.00 36.60 

Urbanization rate (%) 
2015 52.47 51.34 51.85 

2020 57.30 55.30 56.14 

Coal share in primary energy consumption 

(%) 

2015 69.80 67.50 68.60 

2020 69.10 64.80 66.90 

5.2.Future estimating results and discussion 

According the scenarios setting, the MPSO-RBF model obtained using the method discussed in Section 4 

is utilized to forecast the energy demands of China from 2010 to 2020. The predictions are shown in Fig.9. 

In scenario A, China's energy demand will reach 4.66 billion tce in 2015, with an annual growth of 7.12% 

from 2010 to 2015. In 2020, demand will reach 6.26 billion tce. The average annual growth from 2010 to 



 

2020 is 6.70%, which means that even if no energy policies are further implemented, the growth rate will 

still be lower than the 2002–2009 growth rates of 9.3% but greater than the 5.8% growth rate during the 

period between 1980 and 2009. In scenario B, due to slower GDP growth and associated energy-control 

policy implementation, China's energy consumption growth rate will substantially slow down. The average 

annual growth is 3.57%, only one-third of the growth rate from 2002 to 2009.The energy demand is 

expected to reach 3.78 billion and 4.16 billion tce in 2015 and 2020, respectively. From 2010 to 2020, the 

average annual growth rate is 2.81%, only half of the historical growth from 1980 to 2009. Scenario B 

showsideal conditions. In scenario C, the expected growth rate of GDP is 8% to 9% but the energy 

consumption growth rate for the period between2010 and 2015 is expected to be 5.89%. The growth rate is 

from 2010 to 2020 is expected to be 5.08%, lower than the annual average growth from 1980 to 2009. The 

energy demand in 2020 will be 5.29 billion tce, 1.72 times the consumption in 2009. 

The energy intensity (energy consumption per unit of GDP) trends of three scenarios are shown in Fig.10. 

The energy intensity declinesfastest in scenario C, while the smallest decline found is in scenario A. In 

2020, compared with 2009, the energy intensity is forecasted to decrease by 32.15%, 48.0%, and 42.9% in 

three different scenarios. This means that regardless of future scenarios, China's energy use will increase in 

2020by more than 30% compared with that in 2009. In the next 10 years, China should seek to lower its 

energy consumption to support higher economic growth. 

  In 2020, the difference in energy demands between scenarios A and B is 2.10 billion tce. Comparing the 

settings of the two scenarios, significant differencesin GDP growth, proportion of industry in GDP, and 

share of coal energy may be found. In scenario B, GDP growth, proportion of industry in GDP, and share of 

coal energy fall significantly compared with scenario A. Toreverse the situation where China’s growth rate 

of energy consumption has approached the GDP growth rate since 2002 (the average energy elasticity was 

found to be 0.88 between 2002 and 2009), China must abandon the efforts to pursue high economic growth 

and instead focus on industrial restructuring, elimination of high energy consumption and high pollution 

industries, vigorous development of tertiary industries, gradual reduction of the proportion of industry in 

GDP, adjustment of the energy structure, and development of clean energy to reduce the use of coal energy. 

In addition, China should stabilize its population growth and steadily promote urbanization. 



 

 

Fig.9. Energy demand forecasts for different scenarios (2010-2020) 

 

 

Fig.10. Energy intensity of different scenarios (2010-2020). 
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6. Conclusions 

In the present study, an MPSO-RBF-based energy demand forecasting model isproposed and used to 

forecast China’s energy consumption in 2020. The energy demand isanalyzed for the period between 1980 

and 2009 based on GDP, population, proportion of industry in GDP, urbanization rate, and share of coal 

energy. The following conclusions can be drawn from the study. 

(1)The mix-coding PSO-optimized RBF network model effectively establishesa non-linear forecasting 

model for China’s energy demand. There are only four nodes of hidden layers, and the MAPE of the test 

year (2005–2009) is 0.78 % of the model, which has fewer hidden nodes but smaller estimated errors 

compared with other ANN-based energy estimation models. 

(2) Givenbusiness-as-usual, planning, and middle scenarios, China’s energy demands will reach 6.25 

billion, 4.16 billion, and 5.29 billion tce in 2020, respectively, with average annual growths of 6.70%, 

2.81%, and 5.08% for the period between 2010 and 2020. 

(3) Different degrees of energy intensity decline could be expected in 2020. Regardless of future 

scenarios, China's energy efficiencywill increase in 2020 by more than 30% compared with 2009. This 

means that, compared with the historical years from 1980 to 2009, China will be able to lower its energy 

consumption while still supporting higher economic growth in the next 10 years. 
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