
CEEP-BIT WORKING PAPER SERIES 

 

 

Carbon emissions intensity reduction target for China’s power 

industry: An efficiency and productivity perspective 
 

 

Yujiao Xian, Ke Wang, Xunpeng Shi 

Chi Zhang, Yi-Ming Wei, Zhimin Huang 

 

 

Working Paper 117 

http://ceep.bit.edu.cn/english/publications/wp/index.htm 

 

 

Center for Energy and Environmental Policy Research 

Beijing Institute of Technology 

No.5 Zhongguancun South Street, Haidian District 

Beijing 100081 

July 2018 

 

 

 

 

 

 
This paper can be cited as: Xian Y., Wang K., Shi X., Zhang C., Wei Y.-M., Huang Z. 2018. 

Carbon emissions intensity reduction target for China’s power industry: An efficiency and 

productivity perspective. CEEP-BIT Working Paper. 

 

This work was supported by the National Natural Science Foundation of China (Grant Nos. 

71471018, 71521002 and 71761137001), the Social Science Foundation of Beijing (Grant No. 

16JDGLB013), the Joint Development Program of Beijing Municipal Commission of 

Education, the Fok Ying Tung Education Foundation (161076), the National Key R&D 

Program (Grant No. 2016YFA0602603), the International Clean Energy Talent Program of 

Chinese Scholarship Council, and the Key Technology Partnership (KTP) Visiting Fellow 

Program at UTS and BIT. The views expressed herein are those of the authors and do not 

necessarily reflect the views of the Center for Energy and Environmental Policy Research. 

 

© 2018 by Yujiao Xian, Ke Wang, Xunpeng Shi, Chi Zhang, Yi-Ming Wei, and Zhimin 

Huang. All rights reserved



2 
 

The Center for Energy and Environmental Policy Research, Beijing Institute of Technology 

(CEEP-BIT), was established in 2009. CEEP-BIT conducts researches on energy economics, climate 

policy and environmental management to provide scientific basis for public and private decisions in 

strategy planning and management. CEEP-BIT serves as the platform for the international exchange 

in the area of energy and environmental policy. 

Currently, CEEP-BIT Ranks 47, top 3% institutions in the field of Energy Economics at IDEAS

（ http://ideas.repec.org/top/top.ene.htm), and Ranks 52, top 3% institutions in the field of 

Environmental Economics at IDEAS (http://ideas.repec.org/ top/top.env.html). 

Yi-Ming Wei 

Director of Center for Energy and Environmental Policy Research, Beijing Institute of Technology 

For more information, please contact the office: 

Address: 

Director of Center for Energy and Environmental Policy Research 

Beijing Institute of Technology 

No.5 Zhongguancun South Street 

Haidian District, Beijing 100081, P.R. China 

 

Access: 

Tel: +86-10-6891-8551 

Fax: +86-10-6891-8651 

Email: ceeper@vip.163.com 

Website: http://ceep.bit.edu.cn/english/index.htm 

  



3 
 

 

Carbon emissions intensity reduction target for China’s power 

industry: An efficiency and productivity perspective 

 

Yujiao Xian a,b, Ke Wang a,c,d,*, Xunpeng Shi e,f,g, Chi Zhang h, Yi-Ming Wei a,c,d, Zhimin Huang a,i 

 
a Center for Energy and Environmental Policy Research & School of Management and Economics, Beijing Institute 

of Technology, Beijing, China 
b Productivity and Efficiency Measurement Laboratory & Department of Industrial and Systems Engineering, Texas 

A&M University, College Station, TX, USA 
c Sustainable Development Research Institute for Economy and Society of Beijing, Beijing, China 

d Beijing Key Lab of Energy Economics and Environmental Management, Beijing, China 
e Australia-China Relations Institute, University of Technology Sydney, Ultimo, NSW, Australia 

f Center of Hubei Cooperative Innovation for Emissions Trading System, Hubei University of Economics, Wuhan, 

Hubei, China. 
g Energy Studies Institute, National University of Singapore, Singapore 

h School of Chemical Science and Engineering, Royal Institute of Technology, Stockholm, Sweden 
i Robert B. Willumstad School of Business, Adelphi University, Garden City, NY, USA 

 

Graphical abstract: 

 

 

Abstract: This paper proposes a scenario analysis to address whether the national and provincial 

CO2 emissions intensity reduction target during 2016-2020 would be achievable for China’s power 

industry with the identification of change on carbon productivity. This productivity indicator is 

further decomposed to investigate contributions of different sources to productivity growth when 
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there exists technological heterogeneity. Evaluation results show that even if all 

electricity-generating units in each region were able to adopt the best practice, the nationwide 18% 

intensity reduction target is not feasible through improving technical efficiency or upgrading 

technology on electricity generation and carbon abatement in a short or medium term. The existence 

of regional technological heterogeneity in power generation and associated CO2 emissions reduction 

processes implies the necessity of more differentiated regulations and policies for emission reduction 

across China’s regions and inter-regional technology transfer. The emerging national emission 

trading scheme could easy some challenges in formulating emission policy for heterogeneous 

regions. 

Key words: Data Envelopment Analysis (DEA); Endogenous directional distance function (DDF); 

Meta-technology frontier; Heterogeneity; Technological gap 

 

1 Introduction 

Global warming and climate change has increasingly become a public concern and a serious 

challenge in energy policy-making for all governments. The temperature of global surface increased 

0.74 ± 0.18 ◦C during 20th century (IPCC, 2013). In the United Nations Framework Convention on 

Climate Change (UNFCCC) Conference of the Parties (COP) in Paris of 2015, there is a globally 

accepted target (2°C) and ambition target (1.5°C) for limiting global temperature rise. 

The increase of fossil fuel consumption, which is the main driving force of global warming and 

climate change, has led to the global socio-economic development and large-scale CO2 emissions 

(Chen et al., 2018). As the world’s largest emitter of CO2, China had announced a series of 

agreements and targets on climate change mitigation. For example, on the Copenhagen climate 

change summit in 2009, China announced that it would reduce its CO2 emissions intensity of GDP 

(i.e., CO2 emissions per unit of GDP) by 40-45 percent by 2020 relative to the 2005-level (Paltsev et 

al., 2012). Furthermore, in the COP 2015in Paris, the Chinese government had made three major 
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commitments in its Intended Nationally Determined Contribution (INDC) regarding CO2 emissions. 

The first is to peak its CO2 emissions no later than 2030. The second is to reduce its CO2 emissions 

intensity of GDP by 60-65 percent by 2030 relative to its 2005-level. The third is to increase the 

share of non-fossil energy in the total primary energy supply to 20 percent by 2030 (Bjorn, 2016). To 

meet these targets, China implemented a series policies and regulations in each Five-Year Plan (FYP) 

period. FYP, which is formulated by Chinese government, guides the national economy and social 

development and environmental protection. Table 1 presents some nationwide targets in 11th, 12th and 

13th FYP. According the nationwide 18% reduction target, each province in China also implemented 

its regional CO2 emissions intensity (i.e., CO2 emissions per unit of total output value) reduction 

target of 13th FYP.  

 
Table 1 Nationwide targets on energy conservation and carbon control 

Periods Reduction targets 

 Energy intensity 

(SCC, 2007; SCC, 2011a) 

CO2 emissions intensity 

(SCC, 2011b; SCC, 2016) 

11th FYP (2006-2010) 20% - 

12th FYP (2011-2015) 16% 17% 

13th FYP (2016-2020) - 18% 

Note: Energy intensity is final energy consumption per unit of GDP; CO2 emissions intensity is CO2 emissions 

per unit of GDP. 
 

Achieving the CO2 emissions intensity reduction target in China’s electricity generation sector 

plays a crucial role in the national efforts to control CO2 emissions and other air pollutants (Wang et 

al., 2016b; Wang et al., 2018b). According to the International Energy Agency (IEA, 2011), China’s 

power sector, which is dominated by the consumption of fossil fuels and nonrenewable energies, 

accounts for about 50% of China’s total CO2 emission in 2010. Whether the CO2 emission targets for 

the electricity sector is achievable is an issue that is important to the Chinese policy makers and the 

global community that is fighting with climate change. For the Chinese policy makers, another 

question, which is also significant for formulating the policies that promote the energy and 

environmental efficiency, is how to further reduce CO2 emissions (Hampf and Rødseth, 2015). 
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The present paper has two aims. The first aim is to evaluate the feasibility of the nationwide 

(18%) and provincial CO2 emissions intensity reduction target for China’s power industry in 13th 

FYP given its existing technologies of generation and emission control. The second aim is to identify 

the ways in which the reduction targets can be reached from the perspective of productivity change. 

Thus, this study evaluates the carbon productivity of China’s power industry in the 12th FYP period 

and identify the driving forces for their improvement. 

An evaluation of carbon efficiency and productivity of power industry sector for China’s 30 

provinces is offered using an endogenous directional distance function (DDF) proposed by Färe et al. 

(2013) to identify the largest efficiency improvement potential and the meta-technology frontier 

approach to solve the problem of the technological heterogeneity among provinces. Understanding 

the technological frontier is significant for identifying the feasibility of CO2 emissions intensity 

reduction target. Improving the carbon efficiency and productivity is an important way to achieve the 

CO2 emissions intensity reduction target. Meanwhile, the factorial decomposition of productivity 

change in the past trends could help researchers to identify the drivers in objective variable, i.e., the 

reduction on CO2 emissions intensity. 

Existing studies on DDF and productivity change decomposition have faced several challenges. 

First, in most applications of DDF, the directional vector is selected by the researchers. This selection 

is arbitrary and does not guarantee capturing the largest efficiency improvement potential (Adler and 

Volta, 2016; Wang et al., 2016a). Second, most of the existing studies applying meta-frontier 

technique only analyzed the group differences from the spatial dimension perspective (Oh, 2010; 

Hančlová and Melecký, 2016; Barros and Wanke, 2017a,b; Feng et al., 2018). In other words, most 

researchers only employed the cross-sectional data to do an analysis. Hence, the other dimension 

perspective, that is the temporal perspective, should be considered into the meta-frontier technique to 

do some further analysis. Third, the existing scenario analysis and decomposition analysis only 

focused on the decomposition of productivity change into efficiency change and technical change 
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(i.e., best practice gap change) (Du et al. 2014; Lee et al., 2015; Lin and Zhao, 2016). Therefore, 

more drivers need be explored in the productivity evaluation via scenario analysis. 

This study makes the following contributions to the existing literature at the theoretical and the 

application level. First, the endogenous DDF approach provides a more reasonable evaluation of the 

CO2 emissions intensity reduction target in China’s power industry through identifying the largest 

efficiency improvement potential. Second, the meta-technology technique takes into account the 

technological heterogeneity of different power industry sectors across China’s regions, providing a 

more proper estimation of the driving forces of carbon productivity growth in China’s power industry. 

Third, this study takes both the spatial dimension and the temporal dimension into consideration via 

scenario analysis, presenting a more comprehensive investigation on the productivity change from 

the perspective of technical efficiency change (TEC), best practice gap change (BPC), and 

technological gap change (TGC). Fourth, this is the first study to examine the feasibility of emission 

target for China’s power generation sector in 13th FYP and investigate additional policy option to 

achieve the target. 

This reminder of this paper is organized as follows: Section 2 is the literature review. Section 3 

introduces the methodology including the production and environmental technologies and 

endogenous efficiency estimation method, the meta-technology frontier approach, and the 

Luenberger productivity indicator and its decomposition. Section 4 presents the empirical study of 

the examination of the feasibility of CO2 emissions intensity reduction target and the identification of 

productivity change in China’s power industry. Section 5 concludes the study. 

 

2 Method 

In this study, to measure the carbon efficiency and productivity, the nonparametric DDF 

approach based on the DEA technique is employed to estimate the technologies. An endogenous 

efficiency measure is proposed for Luenberger productivity indicator of meta-technology and its 
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decomposition. A brief explanation of the technical issues will be presented in the next three 

sub-sections and the scenario design will be explained in section 2.4. 

2.1 Production and environmental technologies and endogenous efficiency estimation 

By considering a production process of j=1,2,...,n observed power industry sectors at provincial 

level, each province comprises a vector of input ( )1 2, ,..., ,..., m

j j j ij mjx x x xx R+=  , a vector of intended 

(or good) outputs ( )1 2, ,..., ,..., s

j j j rj sjy y y yy R+=  , and a vector of unintended (or bad) outputs 

( )1 2, ,..., ,..., h

j j j fj hj= u u u uu R+ . The production possibility set T of this production process is a 

combination of all technically feasible input-output, and is denoted by: 

( ) ( ) , , : can produce ,T= x y u R x  y u
m s h+ +

+     (1) 

The production possibility set T satisfies the following axioms (Färe and Grosskopf, 2004) on 

technology: i) Nonempty and closed; ii) Convexity; iii) Inputs are free disposable: 

( ) ( )If , ,  and ' ,  then ', ,x y u T x x x y u T   ; iv) Intended outputs are free disposable: 

( ) ( )If , ,  and ' ,  then , ',x y u T y y x y u T   ; v) Unintended outputs and intended outputs are jointly 

weakly disposable: ( ) ( )If , ,  and 0 1,  then , ,x y u T x y u T      ; vi) Unintended outputs and 

intended outputs are null-joint: ( )If , ,  and u ,  then x y u T y = =0 0 . 

The weak disposability axiom indicates that the contraction of unintended outputs is costly 

since the intended outputs must be decreased correspondingly. More explicitly, inputs would be 

reallocated between the production of intended outputs and the regulation of unintended outputs. In 

addition, the null-jointness assumption suggests that there would be no intended outputs without 

unintended outputs. 

On the basis of these axioms this sub-section then describes the preparation of the DDF. Under 

the background of evaluating environmental efficiency and productivity, Chambers et al. (1996a) and 
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Chung et al. (1997) introduced the DDF. Since the seminal work of Chambers et al. (1996a), the 

DDF is a widely used approach to analyze the energy and environmental issues (Picazo-Tadeo et al., 

2012; Wang et al., 2013; Halkos et al., 2016). It can help to model the pollution technologies, i.e., 

expand desirable outputs and control pollution or energy inputs simultaneously. 

DDF estimation can be operationalized via both parametric estimation approach and the 

non-parametric estimation approach. The parametric estimation approach, which is usually employed 

to estimate the shadow prices of pollution, is based on a regression model such as Stochastic Frontier 

Analysis (SFA) model. Hence, it needs a specified form of production function for efficiency 

estimation. The applications of this approach can be found in Vardanyan and Noh (2006), Färe et al. 

(2012) and Fetanat and Shafipour (2017). The non-parametric estimation approach is based on a 

mathematical programming model such as data envelopment analysis (DEA) model, and thus, it does 

not need to specify production function. DEA is an effective efficiency technique in the 

multiple-input and multiple-output setting without specifying any functional form and pre-assigned 

weights. This approach has been widely utilized in energy and environmental efficiency 

measurement, such as Park et al. (2008), Wang et al. (2016c), Wang et al. (2016d), Barros et al. 

(2017), Chen et al. (2017), Wanke et al. (2017) and Díaz-Villavicencio et al. (2017). 

This formulation of DDF, which expands intended (or good) outputs and contracts unintended 

(or bad) outputs simultaneously, is a better strategy than traditional distance function proposed by 

Shephard (1970) on efficiency estimation. Its corresponding definition in an output-oriented model is 

denotes as: 

( ) ( ) , , ; max : , ,y uD x y u g x y g u g T  = + −      (2) 

In which β (≥0) is the inefficiency score of the evaluated province and ( ),y ug g g= −  is a 

directional vector. The province under evaluated is efficient if β =0, and is inefficient if β >0. In 



10 
 

addition, /
ry rg y  is the inefficiency score of intended output yr, and /u fg u

f
 is the inefficiency 

score of unintended output uf. 

However, for the application of DDF based on DEA technique, the directional vectors are 

usually arbitrarily selected by the researchers in advance (Wang et al., 2017; Wang et al., 2018a). 

Hence, there would be no trade-offs between intended and unintended outputs in this arbitrary 

selection process. Another weakness is that it would underestimate the inefficiency scores when there 

are some non-zero slacks on outputs (Fukuyama and Weber, 2009; Barros and Wanke, 2017a,b). 

Furthermore, when using the weak disposability axiom mentioned above, there would be a 

downward-sloping segment of unintended outputs where the frontier has a negative slope 

(Picazo-Tadeo and Prior, 2009; Chen and Delmas, 2012). In this situation, some inefficient points 

located on this segment would be misclassification as efficient along with the arbitrary directions. To 

overcome these difficulties, Färe et al. (2013) and Hampf and Krüger (2014) proposed an 

endogenous technique to select the directional vectors, i.e., maximizing the inefficiency score of the 

evaluated province over the directions. The associated DEA model for evaluated province j0 under 

variable return to scale (VRS) can be presented as follows: 

( )

0 0
0

0

0 0 0

0 0 0

0 0

, , ,
max

, 2

, 2

, 2

1

   









 

 +

 + 

+  

− = 









 

j rj fj

s

r= rj
n

ij ij 1j 2j

j=1
n

rj rj rj rj 1j

j=1
n

fj fj fj fj 1j

j=1
fs

rj fj

r=1 f=1

 

s.t.    x x λ λ  i= , ,...,m

         y y y λ  r= , ,...,s

         u u u λ  f= , ,...,h

         + =

  ( )

0 0

1

, , , , , 2 , 2 , 2  

+

    


n

1j 2j

j=1

1j 2j rj fj

       λ λ =

         λ λ   j= , ,...,n r= , ,...,s  f= , ,...,h.

    (3) 

In our model, the objective function is to maximize the reduction percentage of CO2 emissions 

intensity. λ1j and λ2j indicates the intensity variable, whereas   and   represent the different 
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weights for intended and unintended outputs, respectively. The non-negative constraints on weight 

variables intimate that only the directions ( ) ( ), ,=
y u

g g g y u= − −   that would not reduce 

intended outputs or expand unintended outputs can been chosen, where “ ” indicates the Hadamard 

product for two vectors. 

2.2 Meta-technology 

Since the measurement of carbon efficiency and productivity makes the effort of carbon control 

accountable, the productivity growth is considered a key indicator in assessing carbon performance 

change. However, a conventional productivity index is not capable of distinguishing the 

heterogeneity from differentiated technologies (Battese et al., 2002; Heshmati et al., 2012; Sueyoshi 

et al., 2018). In recent studies, many researches focus on the technological heterogeneity from a 

theoretical perspective (Moreira and Bravo-Ureta, 2010; Fallahfini et al., 2012; Makni et al., 2015). 

In other words, these studies assume that provinces process different level of production technology 

due to the differences in socioeconomic condition, geographical location, generation fuel mix and 

industrialization level.  

To solve this problem, some researchers employed the meta-frontier technique that is capable in 

distinguishing production technologies by classifying them into different groups, such as Wanke and 

Barros (2016) and Azad et al. (2017). The concept of meta-frontier, which is introduced by Hayami 

(1969), is to ensure that all heterogeneous units are assessed based on a common and identical 

frontier. In other words, the aim of introducing meta-frontier is to provide a homogeneous frontier 

for heterogeneous units (Battese et al. 2004). The meta-frontier can be interpreted as a wrapper of all 

possible boundaries that could possibly result from the heterogeneity between units (O'Donnell et al., 

2008). 

Following the meta-frontier technique, a set of technologies from both the spatial dimension and 

the temporal dimension are modelled as follow. Supposing our sample can be divided into H groups 
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with different group technology Th (h=1,2,…,H), and the units in each group have similar technology 

in each period t (t=1,2,…,T). Hereafter, the intertemporal technology of group h is defined as 

( ... ), ( )T T T T
 =    I T

h h h hConv h= , ,...,H . This production technology contains all observations of 

group h in the entire study period. Moreover, the meta-technology of all groups is defined as 

( ... )T T T T =   M I I I

HConv . This production technology covers all observations and envelops all 

the intertemporal technologies. 

Fig. 1 shows a meta-technology model with one intended output and one unintended output. 

Supposing there are two groups and their intertemporal technology frontiers (ITF) are labeled with l1 

and l2, while the meta-technology frontier (MTF) encompasses these two frontiers and is labeled with 

m1. In addition, assuming there are three periods for each group. For group 1, the group technology 

frontier (GTF) for time t1, t2 and t3 is respectively labeled with g1, g2, and g3, whereas the ITF 

encompassed these three frontiers and is labeled with l1. 

 

 
Fig. 1 GTF, ITF and MTF 
 

Thus, applying Eq. (2) to the GTF, ITF and MTF, respectively: 

( ) ( ) , , ; max : , , , .h h h= =  h= , ,...,Hy uD x y u g x y g u g T+ −          (4) 

( ) ( ) , , ; max : , , , .I I I

h h h= =  h= , ,...,Hy uD x y u g x y g u g T+ −          (5) 
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( ) ( ) , , ; max : , , .M M M= =   + − y uD x y u g x y g u g T     (6) 

where ( ), , ;hD x y u g  measures the distance between the evaluated unit and the GTF of group h, and 

( ), , ;I

hD x y u g  measures the distance between the evaluated unit and the ITF of group h, whereas 

( ), , ;M
D x y u g  measures the distance between the evaluated unit and the MTF. 

2.3 Luenberger productivity indicator and its decomposition 

    Employing the concept of DDF, the Luenberger productivity indicator of meta-technology 

(LPIM) and intertemporal technology (LPII) of group h can be respectively defined as follows: 

( ) ( ) ( )
( ) ( )

, , ; , , , , , ,

, , , ,

t t t t+ t+ t+ M t t t M t+ t+ t+

M t t t M t+ t+ t+

LPIM =

                                                 = 

     

  

−

−

x y u x y u D x y u D x y u

x y u x y u
    (7) 

( ) ( ) ( )
( ) ( )

, , ; , , , , , ,

, , , ,

t t t t+ t+ t+ I t t t I t+ t+ t+

h h h

I t t t I t+ t+ t+

h h

LPII =

                                                = 

     

  

−

−

x y u x y u D x y u D x y u

x y u x y u
      (8) 

( ) ( ) ( )
( ) ( )

, , ; , , , , , ,

, , , ,

x y u x y u D x y u D x y u

x y u x y u 

     

  

−

−

t t t t+ t+ t+ G t t t G t+ t+ t+

h h h

G t t t G t+ t+ t+

h h

LPIG =

                                                =
     (9) 

where LPIGh and LPIIh measure the efficiency (or productivity) change within the groups, and LPIM 

measures the efficiency (or productivity) chenge between the groups. 

To identify the sources of productivity change under meta-technology, as mentioned above, 

most studies only analyze the group differences in the spatial dimension and focus on the 

decomposition into efficiency change and technical change (i.e., best practice gap change). 

From the perspective from both the spatial dimension and the temporal dimension, this study 

further investigates the productivity change from the contribution of technical efficiency change 

(TEC), best practice gap change (BPC) and technological gap change (TGC). Similar to the 

decomposition of Malmquiste-Luenberger index in Munisamy and Arabi (2015), hLPII  can be also 
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decomposed into technical efficiency change and best practice gap change, whereas we can 

decompose LPIM into technical efficiency change, best practice gap change and technology gap 

change, as follows: 

( )
( ) ( )
( ) ( )

( )

( ) ( )( )
, , ; , ,

, , ; , ,

, , , ,

, , , ,

, , , , ,

x y u x y u

x y u x y u

x y u x y u

x y u x y u

x y u x y u x y

 

 

  

  

  

  

  

 

−

 −
 

− −

t t t t+ t+ t+
h

t t t t+ t+ t+

h

I t t t I t+ t+ t+

h h

G t t t G t+ t+ t+

h h

TEC

I t t t G t t t I t+ t+

h h h

LPII

         =

         = +

           ( ) ( )( )
( ), , ; , ,

, , ,

x y u x y u

u x y u

  

    −
 

t t t t+ t+ t+
h

t+ G t+ t+ t+

h

BPC

(10)

( )
( ) ( )
( ) ( )

( )

( ) ( )( )
, , ; , ,

, , ; , ,

, , , ,

, , , ,

, , , , ,

x y u x y u

x y u x y u

x y u x y u

x y u x y u

x y u x y u x

 

 

  

  

  

  

  



−

 −
 

− −

t t t t+ t+ t+
h

t t t t+ t+ t+

M t t t M t+ t+ t+

G t t t G t+ t+ t+

h h

TEC

I t t t G t t t I t+

h h h

LPIM

           =

           = +

              ( ) ( )( )
( )

( ) ( )( ) ( ) ( )( )
( )

, , ; , ,

, , ; , ,

, , ,

, , , , , , , ,

x y u x y u

x y u x y u

y u x y u

x y u x y u x y u x y u



   

  

  

    

     

 −
 

 − − −
 

t t t t+ t+ t+
h

t t t t+ t+ t+
h

t+ t+ G t+ t+ t+

h

BPC

M t t t I t t t M t+ t+ t+ I t+ t+ t+

h h

TGC

+

              

       (11) 

In Equations (10) and (11), TEC measures the change on technical efficiency, identifying the 

movement towards or against the GTF. It reveals the catch-up effort of the evaluated units. BPC 

measures the change in best practice gap (BPG), capturing the gap between the ITF and each period 

GTF. It reveals the technical change of the evaluated units over time. TGC measures the change in 

technology gap (TG), representing the gap between the MTF and the ITF for each group. It reveals 

the technological leadership change of the evaluated units, which can be achieved through the 

generation fuel mix adjustment in this study. Specifically, TEC reflects the technical efficiency 

change through expanding intended outputs and/or reducing pollutants in the short term given the 

inputs unchanged. BPC reflects the technical progress or regress in the medium term within one 

group that shows no heterogeneity in electricity generation technology. TGC reflects the technology 

progress or regress in the long term between groups with technological heterogeneity. 
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Note that the positive or negative values of TEC, BPC and TGC respectively indicate technical 

efficiency improvement or deterioration, technical progress or regress, and technological leadership 

progress or regress, while zero values on TEC, BPC and TGC indicate no changes. 

It should be noticed that the strategy for reducing carbon intensity in this study is from the 

perspective of optimizing energy consumption structure, improving technical efficiency, and 

promoting production technology for electricity generation, but without considering the direct 

reduction of energy consumption. The thermal power generation in China had significantly increased 

in the 12th FYP and will continue increase in the 13th FYP in accordance with the growth trends and 

the national development policies (NDRC, 2016), and thus, the total emissions are likely to increase 

continuously. For convenience, all variables, parameters and indicators are presented in Table 2. 

 
Table 2 Summary of variables, parameters and indicators 

Parameters 

Inputs ( )1 2, ,..., ,...,x R
m

j j j ij mjx x x x +=   

Intended outputs ( )1 2, ,..., ,...,y R
s

j j j rj sjy y y y +=   

Unintended outputs ( )1 2, ,..., ,...,u R
h

j j j fj hj= u u u u +  

Variables 

Inefficiency score under hth group technology frontier ( ), , ;D x y u gh h=  

Inefficiency score under hth intertemporal group technology 

frontier 
( ), , ;D x y u g

I I

h h=  

Inefficiency score under meta technology frontier ( ), , ;D x y u g
M M=  

Intensity variable λ1j, λ2j 

The weight of inefficiency for intended outputs   
The weight of inefficiency for unintended outputs   

Indicators 

Group technology frontier GTF 

Intertemporal technology frontier ITF 

Meta-technology frontier MTF 

Productivity change within hth group under group 

technology frontier 
LPIGh 

Productivity change within hth group under intertemporal 

group technology frontier 
LPIIh 

Productivity change between groups LPIM 

Technical efficiency change TEC 

Best practice gap change BPC 

Technology gap change TGC 
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2.4 Scenario design 

Scenario analysis is a useful tool to project future possible reduction of CO2 emissions intensity 

according to various time span conditions. However, the main objective of scenario analysis method 

is to reveal how much the current CO2 emissions intensity of the power industry sector would be 

reduced and then find the feasibility of CO2 emissions intensity reduction target. 

To project the future possible reduction of CO2 emissions intensity in China's power industry 

sector, we set four scenarios to provide a comparison of results under different time span conditions 

in the 12th FYP. The possible reduction of CO2 emissions intensity for the four scenarios was 

calibrated by the actual reduction during 2014-2015, 2013-2015, 2012-2015 and the entire 12th FYP, 

respectively. The increasing reduction in longer time span due to more technologies and economic 

structure changes overtime suggesting that Scenario 4 will have more reduction potential that the rest 

scenarios and Scenario 1 has the least reduction potential. 

Based on these four scenarios, we could have an in-depth insight into the possible reduction of 

CO2 emissions intensity under different time span conditions. 

 

3 Dataset 

This study calculates the largest reduction percentage on CO2 emissions intensity using a 

database containing the power industry sectors of 30 provinces of China that were in operation 

during the 12th FYP period. Tibet, Hong Kong, Macau and Taiwan are not included in our sample 

because their data are missing and they are not involved in the energy saving and emission reduction 

policies of China. The motivations to employ the date of the 12th FYP period are twofold. First, the 

data of the 12th FYP is the basis of the 13th FYP, and thus, the formulation and realization of 

reduction target in the 13th FYP both have a direct relationship with the data of the 12th FYP. Second, 

this paper discusses the possibility of the target realization of carbon intensity reduction from the 
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perspective of potential. The existing intensity reduction potential is obtained from the existing data 

of the 12th FYP and has a significant impact on the possibility of the target realization. 

Our technologies consist of three inputs (employee, fuel consumption and installed capacity) 

which are used to generate one intended output (gross electricity generation) and one unintended 

output (CO2 emissions) for each provincial power industry sector. The reduction of emissions or 

emission intensity at provincial level is usually realized through the strategies of optimizing fuel 

consumption structure and increasing utilization efficiency of fuel through improving technical 

efficiency over time. The inclusion of the above three operational inputs and one emission output 

simultaneously helps to appropriately capture the productivity change and its driving forces, i.e., 

technical efficiency change, best practice gap change, and technological gap change, which are in 

accordance with these strategies, and thus the identified emission reduction potentials and derived 

policy implications could be specifically targeted to the adjustments on these operational inputs. 

The data on employee are collected from the China Industry Economy Statistical Yearbook 

(2012–2016), while the data on fuel consumption, installed capacity and gross electricity generation 

are collected from the Wind database*. Moreover, the data on CO2 emissions is calculated based on 

the fuel consumption that is decomposed into coal, oil and natural gas. In specific, the fuel 

consumption related CO2 emissions is calculated by using the carbon emission factors for the 

combustion of coal, oil and natural gas obtained from IPCC Guidelines for National Greenhouse Gas 

Inventories and the conversion factors from physical unit to coal equivalent (ce) collected from 

China’s energy statistical yearbooks. Table 3 reports the summary statistics of our dataset. 

 
Table 3 Summary statistics of inputs and outputs of China’s 30 provincial power industry sectors 

Inputs and output Year 2011 2012 2013 2014 2015 

Employee  

(thousand persons) 

Mean 89.92  94.57  95.21  94.53  116.35  
St. Dev. 50.09  53.71  55.10  49.53  70.20  

Minimum 9.20  11.75  12.30  12.20  19.10  

Maximum 212.35  211.20  211.30  212.30  280.70  

                                                             
* http://www.wind.com.cn/ 

http://www.wind.com.cn/
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Fuel consumption 

(million ton of ce) 

Mean 47.49  49.22  52.94  54.62  57.13  
St. Dev. 30.19  30.52  32.80  33.89  33.77  

Minimum 4.90  5.38  6.18  6.51  6.88  

Maximum 113.42  117.03  126.83  127.36  140.01  

Installed capacity  

(million kW) 

Mean 35.16  38.13  41.54  45.29  51.73  
St. Dev. 20.39  21.76  23.56  25.43  25.90  

Minimum 4.25  5.02  5.10  5.14  6.35  

Maximum 76.31  77.96  83.53  92.14  99.35  

Electricity 

(billion kWh) 

Mean 153.38  160.56  174.76  182.06  190.74  
St. Dev. 98.97  100.81  109.14  112.74  113.35  

Minimum 16.91  19.20  21.52  22.94  24.47  

Maximum 375.56  392.84  428.89  434.67  465.14  

CO2 

(million tons) 

Mean 130.81  130.17  133.71  129.91  113.23  
St. Dev. 100.78  104.04  100.54  100.34  94.36  

Minimum 11.15  12.06  13.19  10.83  11.46  

Maximum 402.88  417.67  382.12  405.41  401.55  

 

When calculating the carbon intensity reduction potentials and analyzing the carbon 

productivity change, the effect of carry-over activities between two consecutive terms has already 

been accounted in this study, namely, the selected inputs and outputs variables are all work in the 

current period. On the one hand, the fuel consumption represents the energy consumption during the 

current period, whereas the gross electricity generation represents the electricity generation quantity 

in the current period. Moreover, since the provincial average working hours have no significant 

difference among employees in the power industry, the number of employee can be considered as a 

proxy of the labor input in the current period. On the other hand, although carbon emissions have a 

long-term impact on society and environment, this study focus on the feasibility and reasonability of 

the carbon intensity reduction target which is accounted in each single year. Hence, we use the 

annual carbon emissions for analysis. 

Since increasing renewable energy consumption and energy transformation are both important 

energy strategies for controlling CO2 emissions (Qi and Li, 2017), the evaluation in this study is 

conducted on four groups: low-fossil-fuel area, medium-fossil-fuel area, high-fossil-fuel area and 

fossil-fuel-dominated area. These groups are comprehensively characterized by the level of 

economic development, the level of regional carbon emission reduction target, the number of 

electricity generation and the share of fossil fuel consumption in the total energy consumption for 
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electricity generation. The final grouping of these four areas respectively account 0-65%, 65%-85%, 

86%-94% and 94%-100% fossil fuel consumption in the total energy consumption for electricity 

generation. The main reason for the group classification in this study is the technological 

heterogeneity. On the one hand, different energy types have different emission factor, and thus, the 

structure of energy consumption in generating electricity would directly affect the quantity of CO2 

emissions. On the other hand, since each energy type has its corresponding power generator and 

technological capacity, this group classification could distinguish different power generators with 

different power generation technology. Fig. 2 shows the production technology of electricity 

generation and CO2 emissions for these four groups. It can be seen that there are indeed significant 

differences in the production technology among groups during 12th FYP period, and thus, our 

grouping is meaningful for analysis. Fig. 3 presents the geographical distribution of these four 

groups. 

 

 
Fig. 2 Different production technologies among areas during 12th Five-Year period 

 



20 
 

 
Fig. 3 The geographical distribution of four groups with different shares of fossil fuel 

 

4 Results 

This section first evaluates the feasibility of CO2 emissions intensity reduction target in the 13th 

FYP under four scenarios, and then presents the results of productivity change and its driving forces. 

To evaluate the feasibility of CO2 emissions intensity reduction target, the largest reduction on 

CO2 emissions intensity (i.e., the optimal reduction ratio) is first estimated for each provincial power 

sector, namely, the largest reduction on CO2 emissions intensity could be achieved if the electricity 

generating units adopt best practices, using the endogenous efficiency measurement introduced in 

Section 2.2. These estimated largest reduction percentages on CO2 emissions intensity are then 

compared with the CO2 emissions intensity reduction target. 

Because there is not a special target for China’s power industry sector, we here use three kinds 

of targets (i.e., the CO2 emissions intensity target at national level, at provincial level and at firm 

level) as a baseline target for the power industry*. At the national level, the government’s target of 18% 

                                                             

* Since the provincial average electricity price is regulated and almost steady in China, the gross electricity 

generation can be considered as an equivalent of the gross industrial output in power industry. Therefore, it is 
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CO2 emissions intensity reduction during the 13th FYP period is adopted as the baseline target. At 

provincial level, each province had also announced to reduce its corresponding CO2 emissions 

intensity of total output value (i.e., CO2 emissions per unit of total output value) during the 13th FYP 

period, which is set as the baseline target. At the firm level, the government target for the large power 

generation units, that is, a cap of CO2 emissions per unit of electricity supply at 550 g CO2/kWh 

during the 13th FYP is adopted as the baseline target. 

4.1 The feasibility of CO2 emissions intensity target at national level 

Under group technology, intertemporal technology and meta-technology, Fig. 4 depicts the 

largest reduction on CO2 emissions intensity at the national level. The nationwide 18% reduction 

target is compared with the largest reduction percentage on CO2 emissions intensity for the whole 

country and for each group. As shown in Fig. 5, our results indicate that, firstly, through technical 

efficiency improvement in the short term (i.e., expanding electricity generation and reducing CO2 

emissions given the current inputs), the optimal reduction ratio for the whole country could be 

reduced by 2.09%, 1.92%, 2% and 2.45% on average under the four scenarios, respectively. Ratios of 

the low-fossil-fuel area, medium-fossil-fuel area, high-fossil-fuel area and fossil-fuel-dominated area 

could range from 0% to 0.71%, 1.17% to 2.89%, 1.31% to 1.83% and 3.52% to 5.42% on average, 

respectively. All of these reduction potentials are quite lower than the 18% reduction target. 

Secondly, through both the technical efficiency improvement and the technical progress on 

electricity generation and carbon abatement in the medium term within each group, an average 

7.01%, 9.03%, 12.27% and 13.52% national emission reduction under the four scenarios can be 

achieved according to the intertemporal technology. Specifically, the largest reduction ratios of the 

low-fossil-fuel area, medium-fossil-fuel area, high-fossil-fuel area and fossil-fuel-dominated area 

                                                                                                                                                                                                             

reasonable to compare the reduction target of CO2 emissions per unit of GDP (or total output value) with the 

largest reduction percentage of CO2 emissions per unit of electricity generation in China’s power industry 

sector. 
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range from 7.87% to 26.57%, 3.95% to 8.92%, 3.40% to 7.04% and 10.17% to 12.38% on average 

respectively. These reduction potentials are much close to the 18% national reduction target. The 

largest reduction ratios of the low-fossil-fuel area could be 26.03% and 26.57% in scenario 3 and 4, 

and thus achieve the nationwide 18% target. 

Thirdly, through both the technical efficiency improvement and the technical progress on 

electricity generation and carbon abatement within group, as well as the technological transfer 

between groups that can be gradually realized in the long term, the national reduction ratio could at 

least 40.02% on average according to the meta-technology. In addition, under this circumstance, the 

largest reduction ratios of all four areas (32.82%-42.01%, 53.62%-54.89%, 43.07%-44.65% and 

24.53%-31.22%) under these four scenarios can be also far higher than the 18% reduction target. 

The above evaluation reveals that, even if all units were able to adopt their best practice in the 

short term or in the medium term, the 18% CO2 emissions intensity reduction target of the 13th FYP 

could not be achieved through improving the technical efficiency and upgrading the technology on 

electricity generation and carbon abatement. However, this target could be achieved in the medium 

and long term, with substantial technical progress in each area associated with technological transfer 

among provinces, and effective generation fuel mix adjustment for electricity generation and carbon 

abatement. 
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Fig. 4 Largest reduction percentage on CO2 emissions intensity for whole country and each group 

 

4.2 The feasibility of CO2 emissions intensity target at provincial level 

The provincial reduction targets are compared with the largest reduction potential on CO2 

emissions intensity at the provincial level. Fig. 5 shows the CO2 emissions reduction percentages 

from adopting best practice in 30 provinces under four scenarios. It can be seen that the largest 

reduction percentage on CO2 emissions intensity is various among China’s provinces and among 

different technologies, but the results among four scenarios are similar. Specifically, under all three 

technologies, the feasible emissions reduction percentage of eight provinces (Sichuan, Qinghai, 

Zhejiang, Guangdong, Hainan, Shaanxi, Beijing and Jiangsu) is far less than the CO2 emissions 

intensity reduction target of 13th FYP in all four scenarios. Shanghai and Tianjin can only achieve 

their corresponding targets under meta-technology during 2014-2015 scenario. One of the most vital 

reasons may be that due to their advanced development level, these provinces have relatively higher 

technical efficiencies and thus smaller emission reduction potential. Moreover, in all scenarios, the 

CO2 emissions reduction ratios of nine provinces (Hubei, Fujian, Xinjiang, Jiangxi, Chongqing, 

Hebei, Inner Mongolia, Liaoning, and Ningxia) are higher than their provincial CO2 emissions 

intensity reduction target but only under meta-technology. That means, in order to achieve the CO2 
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emissions intensity reduction target, these provinces will have to adjust their fuel mix in the medium 

and long term. 

In addition, the CO2 emissions reduction potential of ten provinces (Yunnan, Guangxi, Gansu, 

Hunan, Jilin, Heilongjiang, Shandong, Anhui, Shanxi and Henan) can be higher than their provincial 

CO2 emissions intensity reduction target under both intertemporal technology and meta-technology. 

The possible emissions reduction potential of Guizhou could be higher than its 12% regional target 

under all three technologies in scenario 3 and 4. In other words, these eleven provinces can achieve 

the CO2 emissions intensity reduction target of 13th FYP through the technical progress on electricity 

generation and carbon abatement within group and/or the technological transfer between groups. 

These results give an important suggestion that, since the maximizing reduction potential on CO2 

emissions intensity are various among regions, the regulations and policies implemented for CO2 

emissions control in power industry should be different across China’s regions. The results also 

suggest that inter-provincial transfer of technologies is necessary as some province can only achieve 

their targets through catching up with the MTF. 
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Fig. 5 Largest reduction percentage on CO2 emissions intensity for each province 
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4.3 The feasibility of CO2 emissions intensity target at firm level 

In this sub-section, we compare the results of CO2 emissions intensity of electricity generation 

(i.e., optimal CO2 emissions per unit of electricity generation) for each province’s power sector with 

the 550 g CO2/kWh target. 

Table 4 presents the results of optimal CO2 emissions intensity of electricity generation using 

the endogenous efficiency measurement and three technology frontiers introduced in Section 2.2. For 

the whole country, the target of capping CO2 emissions intensity of electricity generation at 550 g 

CO2/kWh can only be achieved under MTF. It means that the feasibility of CO2 emissions intensity 

target for China’s power industry sector not only need the technical progress on electricity generation 

and carbon abatement within group and the technological transfer between groups, but also need to 

adjust fuel mix for power generation units. 

The CO2 emissions intensity of electricity generation of low-fossil-fuel area performs best and 

is smaller than 470 g CO2/kWh under all technologies. For medium-fossil-fuel area and 

high-fossil-fuel area, the CO2 emissions intensity of electricity generation can only achieve the 550 g 

CO2/kWh target through the joint efforts of technical progress, technology transfer and the 

adjustment of fuel mix. In addition, it is worth noting that the fossil-fuel-dominated area is hard to 

achieve the 550 g CO2/kWh target. 

In addition, the introduction of renewable energy and the adjustment of fuel mix for power 

generation units are the necessary means to control China’s carbon emissions. 

 
Table 4 Results of CO2 emissions intensity of electricity generation (g CO2/kWh) 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 

 GTF ITF MTF GTF ITF MTF GTF ITF MTF GTF ITF MTF 

Total 666  629  367  688  640  394  706  637  399  722  642  407  

Low-fossil-fuel area 347  307  186  374  290  188  389  260  188  409  275  466  

Medium-fossil-fuel area 695  673  292  715  676  308  717  684  304  731  676  442  

High-fossil-fuel area 895  870  482  909  888  499  928  881  510  950  895  391  

Fossil-fuel-dominated area 716  657  499  744  694  571  777  705  580  788  709  335  



27 
 

 

4.4 Driving forces of the productivity change 

To design a reasonable target of CO2 emissions reduction for each region, it is necessary to 

analyze the driving forces for carbon productivity change in China’s power industry. Hence, the next 

step of this study is to evaluate the change on carbon performance of China’s power industry sector 

in 12th FYP period and further discuss the sources of carbon productivity growth through utilizing the 

productivity indicators introduced in Section 2.3. 

Fig. 6 shows the technology gap of each group, which represents the extent to which the ITF of 

individual group deviates from the MTF. In this figure, since all trends of technology gap of scenario 

1, 2 and 3 are the part of scenario 4, and thus, only the results of scenario 4 are discussed here. 

From 2011 onwards, low-fossil-fuel area and fossil-fuel-dominated area have represented a 

premier technology and have formed the MTF. It implies that the regions that have relatively high 

shares of renewable energy consumption in total energy consumption or mainly rely on thermal 

power for electricity generation, have performed significantly better in electricity generation than the 

regions with mixed energy consumption during our study period. 
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Fig. 6 Technology gap for all four groups 

 

The Luenberger productivity indicator of meta-technology for four groups during 2011-2015 

scenario is presented in Fig. 7, measuring the productivity growth in the long term between groups 

through both improving the technical efficiency and upgrading the technology, as well as through the 

technological transmission on electricity generation and carbon abatement. As can be seen from this 

figure, the LPIM of medium-fossil-fuel area and high-fossil-fuel area are around zero and the LPIM 

of high-fossil-fuel area experiences a little drop in 2014-2015. Althougy there are more fluctuation in 

low-fossil-fuel area and fossil-fuel-dominated area during the study period, this component is also 

around zero in general. These above observations can be verified by the T-test listed in Table 5. This 

result reveals that, since the technical efficiency, the technology and the technological transfer on 

electricity generation and carbon abatement show no significant improvement, there is almost no 

productivity growth among all areas. 
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Fig. 7 Productivity change between groups for four areas during 2011-2015 

 
Table 5 The results of T-test for LPIM 

Group t Sig. 

Low-fossil-fuel area 0.356 0.746 

Medium-fossil-fuel area 0.192 0.860 

High-fossil-fuel area -0.457 0.679 

Fossil-fuel-dominated area -0.507 0.647 

Note: Significant level at 5%. 

 

To provide a clear picture, Table 6 presents the average LPIM and its decomposition for each 

group in the 12th FYP. The average LPIM is calculated by the arithmetic average value of each 

scenario during the period of 2011-2015. Firstly, in terms of average TEC, the low-fossil-fuel area 

has the highest increase of 0.0022 followed by the medium-fossil-fuel area with 0.0004. While the 

high-fossil-fuel area and fossil-fuel-dominated area have a decrease in technical efficiency by 

-0.0095 and -0.0283, respectively. This indicates that the low-fossil-fuel area shows the best 

performance on the catch-up effect. 

Secondly, with respect to the average BPC, the medium-fossil-fuel area, high-fossil-fuel area 

and fossil-fuel-dominated area present the similar technical progress of 0.0195, 0.0203 and 0.0141, 

whereas the low-fossil-fuel area faces a 0.0082 technical progress. One of the most vital reasons may 

be due to the fact that the regions based on thermal power for electricity generation need a relatively 
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advanced technology than the regions that have a relatively high share of renewable energy 

consumption in total energy consumption. 

Finally, the average TGC shows an increase in low-fossil-fuel area (0.0206), wheaeas it shows a 

reduction in medium-fossil-fuel area (-0.0332), high-fossil-fuel area (-0.0549) and 

fossil-fuel-dominated area (-0.0441). This result indicates that an enlarger gap between the ITF of 

last three areas and the MTF. Since the TGC measures the change in technological leadership, it can 

be interpreted that these three areas show no technological leadership progress. 

Regarding the LPIM reported in Table 7, the most obvious productivity growth occurs in the 

low-fossil-fuel area, and this growth is driven by the promotion of technical efficiency and 

technological leadership. On the contrary, the medium-fossil-fuel area, high-fossil-fuel area and 

fossil-fossil-dominated area show productivity decline. Technological leadership regress is the 

primary driving force for the decline in medium-fossil-fuel area, whereas technical efficiency 

deterioration and technological leadership regress are both the primary driving forces leading to the 

drop for high-fossil-fuel area and fossil-fossil-dominated area. An interesting observation is that, the 

scores on LPIM decline associated with the increasing proportion of fossil fuel consumption in total 

energy consumption for electricity generation. Hence, it can be suggested that increasing the share of 

clean energy in electricity generation may help to accelerate the productivity progress in China’s 

power industry. 

 
Table 6 LPIM and its decomposition for each group in the period of 2011-2015 

Group Region LPIM TEC BPC TGC 

Low-fossil-fuel area 

Hubei -0.0560 0 -0.0579 0.0019 

Hunan -0.0480 0 -0.2009 0.1529 

Guangxi -0.0210 0 0.0755 -0.0965 

Sichuan 0.0895 0 0.0691 0.0203 

Yunnan 0.1613 0.0156 0.1384 0.0073 

Gansu -0.0126 0 -0.0813 0.0687 

Qinghai -0.0101 0 0  -0.0101  

Average 0.0147 0.0022 -0.0082 0.0206 

Medium-fossil-fuel area 
Jilin 0.0016 0.0206  0.0418  -0.0609 

Zhejiang -0.0402 0 0 -0.0402 
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Fujian -0.0733 0 0 -0.0733 

Jiangxi -0.0444 0 -0.0393 -0.0051 

Guangdong 0.0586 0 0 0.0586 

Chongqing -0.0830 0 0 -0.0830 

Guizhou -0.0056 -0.0267  0.0607 -0.0396 

Xinjiang 

 

  

0.0797 0.0091  0.0926 -0.0220 

Average -0.0133 0.0004 0.0195 -0.0332 

High-fossil-fuel area 

Hebei -0.0755 0 -0.0281 -0.0474 

Inner Mongolia 0.0428 0 0.0168 0.0260 

Liaoning -0.0047 0 0.0566 -0.0614 

Heilongjiang -0.0155 -0.0668 0.0806 -0.0294 

Hainan -0.1017 0 0 -0.1017 

Shaanxi -0.1193 0 0.0164 -0.1357 

Ningxia -0.0346 0 0 -0.0346 

Average -0.0441 -0.0095 0.0203 -0.0549 

Fossil-fuel-dominated area 

Beijing 0.0960 0 0 0.0960 

Tianjin -0.0309 0 -0.0197 -0.0113 

Shanxi -0.2041 -0.1283 0.0099 -0.0857 

Shanghai -0.2417 0 -0.0605 -0.1812 

Jiangsu 0.0064 0 0.0059 0.0006 

Anhui -0.1500 -0.1077 0.0435 -0.0858 

Shandong 0.2054 0.0291 0.1021 0.0741 

Henan -0.1480 -0.0199 0.0316 -0.1598 

Average -0.0584 -0.0283 0.0141 -0.0441 

 

5 Discussions 

Overall, the feasibility studies show that even if all electricity generation units adopt their best 

practice, the CO2 emissions intensity reduction target in 13th FYP period is infeasible in the short 

term and in the medium term. Based on the analyses, several findings can be obtained as follows. 

The estimation results indicate that the maximum reduction potential of almost all regions would still 

be below the 13th FYP target if only improving the technical efficiency and upgrading the technology 

on electricity generation and carbon abatement in a short or medium term. A large scale of efficiency 

improvement is only achievable in the long term associated with the technological transfer among 

areas, and the effective adjustment of generation fuel mix for electricity generation and carbon 

abatement. Moreover, the largest reduction potentials on CO2 emissions intensity are different among 

regions. Therefore, the targets for CO2 emissions reduction should be variously assigned across 

regions. 
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To inform designing better emission control targets for China’s power industry across regions in 

the future, the productivity change and its decomposition are also analyzed. The estimation shows 

that, i) The low-fossil-fuel area and the fossil-fuel-dominated area have smaller emission reduction 

potential than the other areas during our study period. One possible reason is that the low-fossil-fuel 

area has a relatively high share of renewable electricity generation, and there is no CO2 emissions 

from the using of renewable energy such as solar power, wind power and hydropower. Therefore, 

when generating the same level of electricity, the low-fossil-fuel area has lower CO2 emissions than 

the other areas. In addition, the fossil-fuel-dominated area, which relies on thermal power in 

electricity generation, has a better technology with a relatively low fuel consumption rate for 

electricity generation. 

ii) The LPIM of all groups shows almost no growth in the long term because there is no 

siginificant increase in technical efficiency, upgrade in technology and technological transfer on 

electricity generation and carbon abatement. This suggests weakness in controlling carbon emissions 

and further actions, such as inter-regional technology transfer, more renewable energy introduction 

and limiting the operation of the backward capacity, are needed. 

iii) With respect to the decomposition of the LPIM, the low-fossil-fuel area has the best 

performance on the catch-up effect, but presents the lowest technical progress, whereas only this area 

shows technological leadership progress. Table 7 summaries the situation of LPIM and its 

decomposition for each group. On the one hand, the low-fossil-fuel area experience the productivity 

growth, and its growth is driven by the technical efficiency improvement and technological 

leadership progress. On the other hand, the medium-fossil-fuel area, high-fossil-fuel area and the 

fossil-fuel-dominated area experience productivity reductions. Specifically, the technological 

leadership regress causes the LPIM decline of the medium-fossil-fuel area, while the technical 

efficiency deterioration and the technological leadership regress both lead to this drop for 

high-fossil-fuel area and fossil-fuel-dominated area. 
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Table 7 Summaries on LPIM and its decomposition for each group  

 

 

Definition: share of fossil 

fuel consumption in total 

energy consumption for 

electricity generation 

Technology 

gap 

Productivity 

change 

Technical 

efficiency change 

Technical 

change 

Technological 

leadership change 

Low-fossil-fuel area 0-65% Low Growth (best) Improvement (best) Regress (worst) Progress (best) 

Medium-fossil-fuel area 65%-85% High Reduction Improvement Progress Regress 

High-fossil-fuel area 85%-94% High Reduction Deterioration Progress Regress 

Fossil-fuel-dominated area 94%-100% Low Reduction Deterioration Progress Regress 



 

6 Conclusion 

Electricity generation, which accounts for a relatively large share in energy 

consumption and CO2 emissions, is one of the most important industrial sectors in 

China’s effort to control carbon emission. This article discusses whether the proposed 

nationwide and provincial CO2 emissions intensity reduction target of the 13th FYP 

would be achievable for the existing generating units through scenario analysis. It also 

tries to inform future policy improvement by revealing the driving forces of carbon 

productivity change. 

To capture the feasible reduction in CO2 emissions intensity, this paper estimates 

the maximizing reduction potential in CO2 emissions intensity by increasing the 

electricity generation and decreasing the related CO2 emissions under four illustrative 

scenarios. More specifically, it tries to examine which CO2 emissions intensity would 

be feasible if all the electricity-generating units adopt their best practice. In other 

words, this paper conducts the scenario analysis to identify how much the current CO2 

emissions intensity of the power industry sector would be reduced if the plants 

operated at various technological frontiers. 

The study find that the nationwide 18% CO2 reduction target is not feasible 

through improving technical efficiency or upgrading technology on electricity 

generation and carbon abatement in a short or medium term. The inter-regional 

technology transfer and the effective adjustment of generation fuel mix for electricity 

generation are needed to increase the efficiency in the uses of energy and the control 



 

of carbon emissions. For most provinces, the 18% reduction target is not difficult to 

achieve. However, there is significant inter-regional heterogeneity in technologies and 

thus productivity. It is also found that there is no much potential for all areas to 

improve overall productivity in a five-year period. By group, only low-fossil-fuel area 

has little overall productivity growth (0.0147) driven by technical efficiency 

improvement and technological leadership progress, whereas medium-fossil-fuel area 

experiences overall productivity decline mainly driven by technological leadership 

regress, and high-fossil-fuel area and fossil-fuel-dominated area also experience 

overall productivity decline driven by both technical efficiency deterioration and 

technological leadership regress. 

The present offers the following policy implication. First, since the largest 

reduction percentages on CO2 emissions intensity are various among regions, the 

regulations and policies for CO2 emissions intensity reduction should be more 

differentiated across different regions. Second, considering the limited overall 

productivity improvement potential in the short and medium term, and the significant 

regional heterogeneity, inter-region technology transfer, introducing more renewable 

energy and limiting the operation of the backward capacity could promote emission 

control as well as productivity growth. This is particular true within the thermal power 

generation category where advanced technologies could be transferred from one 

region to another. Third, consider high renewable energy share lead to high 

productivity growth, promoting clean energy consumption in electricity generation 

may help to improve the carbon productivity. This suggestion is actually in line with 



 

the development plan of China’s power industry for INDC, in which to increase the 

share of non-fossil fuels in the total primary energy supply to 20 percent by 2030 is 

targeted. Lastly, the emerging national emission trading scheme will make policy 

formulation for heterogeneous regions much easier. However, regional specific 

emission targets under a national ETS are still necessary to prevent those regions with 

limited abatement potential being overburden to buy carbon credits. 
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