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Abstract: The measurement of carbon productivity makes the effort of global climate 

change mitigation accountable and helps to formulate policies and prioritize actions for 

economic growth, energy conservation, and carbon emissions control. Previous studies 

arbitrarily predetermined the directions of directional distance function in calculating 

the carbon productivity indicator, and the traditional carbon productivity indicator itself 

is not capable of identifying the contribution of different energy driven carbon emissions 

in carbon productivity change. Through utilizing an endogenous directional distance 

function selecting approach and a global productivity index, this paper proposes a global 

Luenberger carbon productivity indicator for computing carbon productivity change. 

This carbon productivity indicator can be further decomposed into three components 

that respectively identify the best practice gap change, pure efficiency change, and scale 

efficiency change. Moreover, the carbon productivity indicator is shown as a combination 

of individual carbon emissions productivity indicators that account for the contribution 

of different fossil fuel driven carbon emissions (i.e. coal driven CO2, oil driven CO2, and 

natural gas driven CO2) toward the carbon productivity change. Our carbon productivity 

indicator is employed to measure and decompose the carbon productivity changes of 37 

major carbon emitting countries and regions over 1995–2009. The main findings include: 

(i) Endogenous directions identifying the largest improvement potentials are noticeably 

different from exogenous directions in estimating the inefficiencies of undesirable 

outputs. (ii) Carbon productivity indicator calculated with the consideration of emission 

structure provides a more significant estimation on productivity change. (iii) The 

aggregated carbon productivity and the specific energy driven carbon productivities 

significantly improve over our study period which are primarily attributed to technical 

progress. (iv) Empirical results imply that policies focused on researching and 

developing energy utilization and carbon control technologies might not be enough; it is 

also essential to encourage technical efficiency catching-up and economic scale 

management. 
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1 Introduction 

Climate change and global warming caused by rising greenhouse gases (GHG) 

emissions has recurrently aroused public concern (Shao et al., 2011). Environmental 

problems have become one of the most challenging issues worldwide; especially some 

developing countries (e.g., China) are concerned with reducing the increasing speeds of 

energy consumption and GHG (e.g., CO2) emissions while promoting the development of 

industrialization. The objective of some policies is to keep economic growth under the 

control of CO2 emissions from the combustion of fossil fuels which is known as the main 

source of GHG (Liu et al., 2007). Although the community is paying more attention to 

carbon emissions, most countries will still be dominated by fossil energy consumption in 

the short term considering their resources endowment and relative low speed of 

renewable energy research and development (Armaroli and Balzani, 2014; Wang et al., 

2013a,b). Therefore, many scholars have stated this dilemma using the evaluation of 

carbon performance, namely, carbon efficiency and productivity instead of traditional 

evaluation of energy performance so as to provide deeper insights into the climate policy 

making and prior actions choosing for energy conservation, emission control and 

economic growth. 

The concept of carbon productivity was proposed by Kaya and Yokobori (1999). 

They defined it as the amount of GDP generated by per ton of CO2 emissions, denoting 

the economic benefits of per unit CO2 emissions. The measure of carbon productivity 

helps to reveal the level of low carbon economy for a country and the corresponding 

development stage of it. He et al. (2010) pointed that the speed of carbon productivity 

growth could be used to assess the effort and effectiveness of responding global climate 

change of a country. This point of view has also been recognized by some other 

researchers. For instance, Stern and Jotzo (2010) identified the relationship between 

carbon productivity and economic performance; Bhattacharyya and Matsiimura (2010) 

decomposed carbon productivity change into a contribution of climate, a residual 

technology variable, and an input and output mix; Davidsdottir and Fisher (2011) 

further extended this concept to GDP intensity of GHG emissions. In order to provide a 

more comprehensive understanding of global carbon productivity changes, the current 

study provide an estimation of carbon productivity2 changes for 37 major emitting 

countries and regions, and the sources for carbon productivity change are additionally 

identified and discussed. 

Previous studies usually use Malmquist–Luenberger productivity index to evaluate 

carbon productivity change. The Malmquist–Luenberger productivity index, which was 

proposed and modified by Caves et al. (1982) and Fa re et al. (1992), has three 

disadvantages: (i) productivity index is not circular; (ii) infeasible situation is existing; 
                                                             
2 In our study, carbon productivity is defined as the total factor carbon emissions productivity which 
calculates the total factor productivity with the consideration of CO2 emissions as an undesirable 
output. For expression convenience, we use the shortened form “carbon productivity” in the 
following text. 



 

and (iii) there are different measures for cross-period observations when computing and 

decomposing the index (Fa re and Grosskopf, 1996). In order to solve these shortages, 

Berg et al. (1992) proposed an index using a base period technology frontier. It satisfies 

circularity and has only one measure on cross-period observations, but it still has 

infeasible situation. Shestalova (2003) introduced a sequential period technology 

frontier approach. This index produces a single measure of adjacent period data and is 

immune to infeasibility. But it ignores the technical regress and also fails circularity. Fa re 

et al. (2001) and Zhou et al. (2010) used windows analysis technique to overcome the 

infeasible situation problem; however this method still pays for the other two 

shortcomings. Pastor and Lovell (2005) presented a global Malmquist index with all 

period data. Their index satisfies circularity and generates a single measure for 

cross-period observations, as well as is immune to infeasible solution. Many studies have 

been employed global index in empirical analysis. For instance, Oh (2010) utilized global 

and conventional technology frontier for a comparative analysis of 26 OECD countries. 

Fan et al. (2015) proposed the global Malmquist–Luenberger index to investigate the 

performance of CO2 emissions. Zhang and Choi (2013) and Zhang and Wei (2015) 

evaluated the total factor carbon emissions performance by combining global frontier 

and meta-frontier so as to take the group heterogeneity into consideration. In our paper, 

we extend their index to a global Luenberger carbon productivity indicator for 

measuring carbon productivity change. It has an addictive structure rather than a ratio 

form to characterize the carbon productivity change. 

When measuring the productivity change with the consideration of both intend or 

desirable outputs (e.g., product or service) and unintended or undesirable outputs (e.g., 

pollution), the Luenberger productivity indicator is usually calculated by directional 

distance function (DDF). Shephard (1970) first proposed the distance function, which 

proportionally expands desirable and undesirable outputs in the feasible region. Then, 

Chambers et al. (1996) introduced the directional distance function to simultaneously 

extend desirable outputs and shrink undesirable outputs or some energy inputs. It can 

be considered that the directional distance function is a generalized form of the distance 

function. Since the use of fossil energy will inevitably generate unintended outputs (e.g., 

CO2 emissions), DDF approach is considered a powerful tool in modeling energy and 

environmental efficiency and productivity (Managi and Jena, 2008; Oggioni et al., 2011; 

Picazo-Tadeo et al., 2014). Moreover, Zhang and Choi (2014) presented a review 

regarding the recent applications of DDF in energy and environmental efficiency studies. 

In most applications of DDF, the directional vectors typically are predetermined by 

researchers (i.e., exogenous directions). This is considered a sort of arbitrary and 

unreasonable for capturing the largest improvement potentials on inputs and outputs. 

Therefore, some recent studies have focused on inquiring a proper direction to the 

production frontier. Peyrache and Daraio (2012) proposed an approach to investigate 

how to obtain the most appropriate directional vector of DDF, whereas Fa re et al. (2013) 

and Hampf and Kru ger (2014) present a model based on exogenous normalization 

constraints. These endogenous directions, which can identify the largest improvement 

under the existing technology, are more reasonable in a sense and considered to be one 

of the most promising methods in determining the directions. In this analysis, we 



 

introduce the endogenous model by Hampf and Kru ger (2014) in to our calculation of 

global Luenberger carbon productivity indicator. 

To the best of our knowledge, previous studies on identifying the sources of carbon 

productivity change mainly focused on the decomposition of carbon productivity change 

into, for example, efficiency change and technical change (David and Paul, 1996; 

Mahlberg and Sahoo, 2011; Chang et al., 2012; Mahlberg and Luptacik, 2014; Woo et al., 

2015). In this study, including the investigation of carbon productivity indicator from the 

traditional decomposition perspective mention above, we further investigate the carbon 

productivity change from a perspective of additionally identifying the contribution of 

specific desirable and/or undesirable output factors (e.g., CO2 emissions from the 

consumption of specific energy). We name this analysis as disaggregation, which is 

considered a complement of decomposition analysis. 

It is important to explore the carbon productivity change from the decomposition 

perspective, since the carbon productivity change has at least two effects on economic 

development. First, decomposition could provide some useful information on policy 

formulation for low carbon economic. Second, it is a guideline for technology 

improvement. Therefore, in this study, on the one hand, the carbon productivity 

indicator is decomposed into pure efficiency change (PEC), scale efficiency change (SEC) 

and best practice gap change (BPC) so as to help identifying the effects of catching-up 

and technical progress in carbon productivity growth. However, on the other hand, the 

global Luenberger carbon productivity indicator itself is not capable of reflecting the 

contribution of individual output sources. Thus, in this study, the outputs are 

disaggregated in a way that makes us to measure the contribution of individual output 

sources to productivity change. The output sources include desirable outputs, i.e., gross 

outputs of industry (GO), and undesirable outputs, i.e., different energy (e.g., coal, oil and 

natural gas) consumption driven CO2 emissions. 

For discussion convenient, in this study, we name the global Luenberger carbon 

productivity indicator with the consideration of carbon emissions structure (i.e., total 

CO2 emissions are disaggregated into different energy driven CO2 emissions) as 

aggregated carbon productivity indicator (ACPI), and name the indicator without the 

consideration of carbon emission structure as integrated carbon productivity indicator 

(ICPI). According to different desirable output factor and fossil fuel driven carbon 

emissions factors, we further disaggregate ACPI into carbon productivity indicator for 

GO (GCPI), coal driven carbon productivity indicator (CDPI), oil driven carbon 

productivity indicator (ODPI), and natural gas driven carbon productivity indicator 

(NDPI). 

The remainder of this paper is organized as follows. Section 2 presents the 

endogenous directional distance function model, and describes global Luenberger 

carbon productivity indicator and its sources. Section 3 introduces the data sources and 

their calculation methods. Section 4 first shows the comparative results of carbon 

efficiency measures from endogenous DDF model and two exogenous DDF models; then 

it provides an empirical analysis based on ACPI and its decomposition and 

disaggregation for 37 major emitting countries and regions. Section 5 provides the 

conclusions and discussions of this study. 



 

 

2 Methodology 

2.1 Carbon efficiency evaluation 

Assume that we have a set of j=1,2,...,n decision making units (DMUj) (i.e. the major 

emitting countries or regions in this study), which use an input vector 
i

x R+  to 

produce a desirable output vector 
s

y R+  and a undesirable output vector 
r

u R+ . The 

production possibility set can be expressed as follows: 

( ) ( ) , , : ,i s r can produce+ +

+T= x y u R x   y u     (1) 

T is often assumed to satisfy the standard axioms: (i) convexity (Shephard, 1970); 

(ii) inputs and desirable outputs are strongly disposable (Fa re and Primont, 1995); (iii) 

undesirable outputs are weakly disposable associated with desirable outputs (Fa re and 

Grosskopf, 2004); and (iv) desirable and undesirable outputs are null-joint. The latter 

three axioms can be expressed as follows: 

( ) ( ) ( ) ( )
( ) ( )
( )

, , ' , ', , ; or , , ' , , ',

, , 0 1, , ,

, , ,

x y u T x x x y u T x y u T y y x y u T

x y u T x y u T

x y u T y

If  and then   if  and then 

If  and then 

If  and u then 

  
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Axiom (iii) means that any proportional decrease of desirable and undesirable 

outputs together is feasible; while axiom (iv) indicates that if desirable outputs are 

produced then some undesirable outputs must be generated. 

Fa re et al. (1989) introduced the weakly disposable undesirable outputs in 

evaluating the performance of production process. Then Chambers et al. (1996) and 

Chung et al. (1997) first proposed to examine environmental efficiency by directional 

distance function (DDF) which seeks to expand the desirable outputs and contract inputs 

and/ or undesirable outputs simultaneously. The output-oriented DDF is defined as: 

( ) ( ) , , ; : , ,g max g g  = + − y uD x y u x y u T     (2) 

where β is the inefficiency measure. A DMU is considered inefficient if β > 0 and as 

efficient if β = 0. 

     The method for estimating directional distance function generally can be divided 

into two categories: the parametric approach (e.g., stochastic frontier analysis) and the 

non-parametric approach (e.g., data envelopment analysis). The parametric approach 

(Kumbhakar and Lovell, 2000), which is usually used for measuring inefficiency and 

shadow prices of pollutants, requires an assumption on the form of production function. 

Examples of the applications of this method can be found in Fa re et al. (2005), 

Vardanyan and Noh (2006), Matsushita and Yamane (2012) and Zhang et al. (2014). The 



 

data envelopment analysis (DEA) technique has an advantage that it does not need a 

pre-chosen specific form of production function, and it is based on the construction of all 

piecewise liner combination of observed inputs and outputs. DEA based approach has 

been widely utilized to examine the energy and environmental efficiency and 

productivity (Zhou et al. 2008; Shortall and Barnes, 2013; Wang et al., 2012; Wang et al., 

2013c; Wang and Wei, 2014). In this paper, we also use the non-parametric DEA 

approach for evaluation3. 

 

2.2 Endogenous direction selection 

In most applications of directional distance function, the directional vectors g y  

and g
u  have be predetermined by the researchers, i.e., they are exogenous directions. 

Two commonly used directions are (i) observation value direction (OVD), i.e., ( g ,gy u ) = 

(y, u), and (ii) unit value direction (UVD), i.e., ( g ,gy u ) = (1, 1). The associated DEA 

models based on OVD and UVD for computing the inefficiency score β for each DMUj are 

presented as follows: 

,
          max  

s.t.   

        

       

       , 

 



 
 

 



+ 

− =

 

j

j j

j j

x X

y y Y

u u U

    (3) 

,
         max   

s.t.  

       

      

       , 

 



 
 

 



+ 

− =

 

j

j

j

x X

y Y

u U
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In Models (3) and (4), λ is the intensity variable; X denotes the i n  matrix of 

inputs; Y denotes the s n  matrix of desirable outputs; whereas U denotes the r n

matrix of undesirable outputs. The first and second inequality restrictions represent the 

strong disposability of inputs and desirable outputs, while the equality restriction 

indicates weak disposability of undesirable outputs. 

The above two predetermined directions expand the intended outputs and contract 

the unintended outputs with the same rate, i.e., they provide conventional radial 

efficiency measures. In practice, these two measures are considered somewhat 

arbitrarily with less economic or policy meaning in efficiency evaluation. Another 

                                                             
3 One shortcoming of traditional DEA approach is the lack of statistical inference. By using the 
bootstrapping technique, this problem can be partially overcome (Simar and Wilson, 1999; Zhang et 
al., 2015). This technique is immune to the uncertainty from the sampling variation of the production 
frontier. Thanks to the reviewer for pointing out this issue. 



 

weakness is that the radial efficiency measure may underestimate the inefficiency of a 

DMU when there are non-zero slacks (Fukuyama and Weber, 2009). In addition, the 

choosing of OVD or UVD is not capable of identifying the largest efficiency improvement 

potentials, and the inefficiency scores calculated from UVD would further be affected by 

the units of inputs and outputs, i.e., the inefficiency measure from UVD is not unit 

invariant. Moreover, Picazo-Tadeo and Prior (2009) and Murty et al. (2012) pointed out 

that the utilization of weak disposability assumption can even lead to a 

downward-sloping segment on the efficiency frontier, and thus some inefficient 

observations would be classified as efficient along with the above two exogenous 

directions. To solve these problems, several studies have extended a new approach 

which adjust different outputs with different rates, namely, the non-radial DDF (e.g., Fa re 

and Grosskopf, 2010; Zhou et al., 2012; Barros et al., 2012). It disaggregates the 

inefficiency of DMU for each specific input and output factor. From the perspective of 

identifying the slacks and being free from the unit scaling problem on efficiency 

measurement (Fa re et al., 2007), the non-radial DDF is considered more favorable than 

the radial DDF. However, traditional non-radial DDF still cannot deal with the 

downward-sloping situation of frontier or identify the largest efficiency improvement 

potentials. Therefore, Fa re et al. (2013) developed an endogenous direction based on 

exogenous normalization constrains, i.e., maximizing the inefficiency measure of DMU 

under evaluation over the directional vectors. In this study, we name the endogenous 

direction as ED. Furthermore, Hampf and Kru ger (2014) explored a more general 

method to endogenously seek the directions along which each DMU can identify the 

largest efficiency improvement potentials. Both of the above two measures extend 

non-radial DDF and make it immune to the shortcomings of the conventional radial 

efficiency measures. The associated DEA model based on the ED for computing the 

inefficiency score β for each DMUj is presented as follows: 

, , ,
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In Model (5), “ ” is the Hadamard product for two vectors. The vectors α and δ are 

the different weights for desirable and undesirable outputs, respectively, and the 

associated non-negative restrictions on α and δ imply that only the directions that do not 

reduce desirable outputs or increase undesirable outputs are chosen. The inefficiency 

score for specific desirable output yh (h=1,2,…,s) is hy , and the inefficiency score for 

specific undesirable output uk (k=1,2,…,r) is ku . They can be set up as: 

,h= s = 
h hy y     (6) 



 

,k= s = 
k ku u

    (7) 

where 
hy  and 

ku  represent the weight of desirable output yh and undesirable output 

uk. 

Thus, we have 
1 1 1 1

    
= = = =

= + = +   h k h k

s r s r

y u y uh k h k
. 

To utilize the endogenous directions instead of the predetermined exogenous 

direction are considered more reasonable in efficiency measure, because the DMU under 

evaluation along the endogenous directions presented in Model (5) can capture the 

furthest distance to the efficiency frontier, namely, it can identify the largest efficiency 

improvement potentials under the current technology. 

 

2.3 Global Luenberger productivity indicator calculation 

As mentioned above, traditional Luenberger productivity indicator may encounter 

the problems of failing circularity, spurious technical regress, infeasible situation and 

different measures for cross-period DDF (Wang and Wei, 2016). To overcome these 

weaknesses, we introduce the global production technology to the Luenberger 

productivity indicator for computing carbon productivity change. 

Consider a panel data set of t=1,2,…,T time period, a global benchmark technology is 

defined as 𝑻𝐶
𝐺 = 𝑻𝐶

1 ∪ 𝑻𝐶
2 ∪ … ∪ 𝑻𝐶

𝑇 or 𝑻𝑉
𝐺 = 𝑻𝑉

1 ∪ 𝑻𝑉
2 ∪ … ∪ 𝑻𝑉

𝑇  (Pastor and Lovell, 2005). 

The subscribe C or V denotes the technology exhibiting constant returns to scale (CRS) 

or variable returns to scale (VRS). 

The global Luenberger productivity indicator (GLPI) defined on is as follows: 

( ) ( ) ( )
( ) ( )

, , ; , , , , , ,

, , , ,

G t t t t+ t+ t+ G t t t G t+ t+ t+

C C C

G t t t G t+ t+ t+

C C

GLPI = - 

                                                   = -  

     
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x y u x y u D x y u D x y u

x y u x y u
    (8) 

where the directional distance function 

( ) ( ) , , : , ,G G

C Cmax   = +  −  D x y u x y y u u T . 

In Eq. (8), the positive, zero, or negative values of 
G

CGLPI  respectively indicates the 

global Luenberger productivity growths, remains at the same level, or declines. Similar 

to the decomposition of Malmquist index and Luenberger indicator by Fa re et al. (1994) 

and Chambers et al. (1996), the can be decomposed into efficiency change (EC) and best 

practice gap change (BPC) as showed in Eqs. (9) and (10): 

( ) ( )t+1

C, , , ,t t t t t+ t+ t+

CEC= -     
x y u x y u     (9) 

( ) ( ) ( ) ( )t+1

C C, , , , , , , ,G t t t t t t t G t+ t+ t+ t+ t+ t+

C CBPC=            − − −
   

x y u x y u x y u x y u     (10) 



 

EC is technical efficiency change on cross-period observation, capturing the 

movement away from or toward the technology frontier. BPC is technology change, 

measuring a change in the best practice gap between the global technology frontier and 

each period technology frontier. The efficiency change can be further decomposed into 

pure efficiency change (PEC) and scale efficiency change (SEC). Here, scale efficiency 

means the deviation from the existing production scale and the optimal scale that 

produces maximum marginal benefit. PEC measures the change of technical efficiency 

under VRS and SEC measures the scale efficiency change between two adjacent periods. 

PEC and SEC can be computed as follows: 

( ) ( )t+1, , , ,t t t t t+ t+ t+

V VPEC= -     
x y u x y u     (11) 

( ) ( ) ( ) ( )t+1, , , , , , , ,t t t t t t t t t+1 t+ t+ t+ t+ t+ t+

C V C VSEC=            − − −
   

x y u x y u x y u x y u     (12) 

Therefore, the sum of the three components (PEC, SEC and BPC) is equal to GLPL: 

( ), , ; , ,G t t t t+ t+ t+

CGLPI =PEC+SEC+BPC  
x y u x y u     (13) 

At last, we point out that for the individual output carbon productivity indicators 

(i.e., GCPI, CDPI, ODPI and NDPI) and their decomposition, they can be obtained 

corresponding from Eqs. (8), (10), (11) and (12) with the individual inefficiency scores 

of desirable output and three specific energy driven carbon emissions outputs. Note that 

the positive (or negative) values of PEC, SEC and BPC respectively indicate pure 

efficiency improvement (or deterioration), scale efficiency increase (or decrease), and 

technical progress (or regress). All zero values on PEC, SEC and BPC indicate no changes. 

 

3 Data 

Our analysis relies on a panel data of world’s 37 major emitting countries and 

regions over the periods 1995–2009 which are collected from World Input–Output 

Database (WIOD). WOID has been used to analyze the effects of socio-economic 

development, environmental pressures and globalization on trade patterns across a 

wide range of countries. In our sample, each of these 37 major emitting countries and 

regions has two inputs (i.e., labor and capital), one desirable output (i.e., gross outputs of 

industries, GO) and three undesirable outputs (i.e., coal driven CO2 emissions, oil driven 

CO2 emissions, and natural gas driven CO2 emissions). We detail the data sources and 

calculation methods of each variable as follows. 

Labor is computed as total hours worked by persons engaged (millions hours) in 

the industry sector which was originally collected from employment and labor force 

statistics for each country and region. Capital is the real fixed capital stock which 

includes investment and capital stocks at constant prices in 1995. It is then transformed 

into international currency (millions US$) by exchange rate provided in WIOD database. 

Gross outputs of industry are also calculated in millions US$ at constant prices in 1995. 

Meanwhile, the aggregated CO2 emissions as well as its components of coal driven, oil 



 

driven, and natural gas driven CO2 emissions with respect to carbon emission structure 

are measured in thousand tons of CO2. We first obtain the coal driven CO2 emissions for 

each year from sub-item carbon emissions (i.e., hard coal and derivatives, lignite and 

derivatives, coke) according to the Air Emission Accounts of WIOD. Then we calculate 

the part of oil driven CO2 emissions for each year using diesel oil for road transport, 

motor gasoline, jet fuel (kerosene and gasoline), light fuel oil, heavy fuel oil, naphtha and 

other petroleum products. Finally, the natural gas driven CO2 emissions and derived gas 

driven CO2 emissions are accumulated into unified natural gas CO2 emissions. 

 

4 Empirical analysis 

In this section we first provide a comparative analysis between the evaluation result 

based on endogenous directions (ED) and two exogenous directions (i.e., observation 

value directions and unit value directions). Second, we analyze the global Luenberger 

carbon productivity indicator with and without the consideration of carbon emission 

structure. Then we generally illustrate the aggregated carbon productivity indicator, 

individual carbon emissions productivity indicators, and the decomposition of these 

carbon emissions productivity indicators. At last, we present and discuss the empirical 

results on carbon productivity change for different energy consumption group of 

countries, and for specific countries. 

 

4.1 Comparative analysis between endogenous directions and two exogenous 

directions 

We compute the inefficiency scores of all major emitting countries and regions 

using Models (3)–(5). The results of inefficiency scores on gross outputs of industry, coal 

driven CO2 emissions, oil driven CO2 emissions, and natural gas driven CO2 emissions 

with respect to ED, OVD and UVD are presented in Table 1. The average inefficiency 

scores are arithmetic means of 37 major emitting countries and regions. For all outputs, 

it can be seen in Table 1 that the national average inefficiency scores under ED are the 

largest. The countries that display the most similar situations are Australia, Russia, 

Turkey and USA. Their annual average inefficiency scores based on ED are far greater 

than those based on OVD and UVD. This result verifies that countries and regions can 

identify the largest efficiency improvement potentials along the endogenous directions. 

[Insert Table 1 here] 

 

In order to provide a further insight into the method comparison, we apply the 

Kruskal-Wallis (KW) test to test the null, which assumes the ranks between two methods 

are the same. The paired comparison results for endogenous direction, observation 

direction and unit value direction are listed in Table 2. The first four rows are the results 

for GO. It can be found that the inefficiency scores under ED and OVD have the same 

ranks at the 5% level of significance, while UVD is significantly different with the other 

two methods. As can be seen in coal driven CO2 emissions, we reject the null in ED vs. 



 

UVD and ED vs. OVD, indicating that the rank of inefficiency scores in endogenous 

directions is distinct from the other two methods. The test result of natural gas driven 

CO2 emissions is similar to that of coal driven CO2 emissions. The test result of oil driven 

CO2 emissions reveals that these three methods differ significantly. This finding indicates 

that endogenous direction is significantly different from exogenous directions in 

calculating the inefficiency scores of undesirable outputs which verifies the necessity of 

alternatively utilizing the endogenous direction based model. 

[Insert Table 2 here] 

 

4.2 Comparative analysis between ICPI and ACPI 

First, we discuss the relationship of global Luenberger carbon productivity 

indicator with and without consideration of carbon emission structure (i.e., aggregated 

carbon productivity indicator and integrated carbon productivity indicator) by Model 

(5). Figure 1 shows the average annual ICPI and AVPI of 37 countries and regions from 

1995 to 2009. It can be seen that these two indicators experience a similar trend. During 

1995–2001, they both indicate negative carbon productivity changes, especially for the 

case of ACPI. Then the two indicators show positive growths during 2001–2008 and 

rapid declines from 2008 to 2009. This may appear to come from the delayed impact of 

the global financial crisis, and the energy consumption growth is greater than economic 

growth during this period. 

[Insert Figure 1 here] 

 

Meanwhile, Figure 1 also illustrates that the absolute value of carbon productivity 

indicator is basically greater in ACPI than ICPI. Namely, ICPI is higher than ACPI when the 

indicator < 0, and ACPI is greater than ICPI when the indicator > 0. This result indicates 

that the carbon productivity indicator may be underestimated if we do not take carbon 

emission structure into consideration. In other words, carbon productivity indicator 

calculated with the consideration of emission structure provides a more significant 

estimation on productivity change. Therefore, in the following sections we primarily use 

the carbon productivity indicator with the consideration of carbon emission structure 

(i.e., ACPI) and individual carbon emissions productivity indicators (i.e., CDPI, ODPI and 

NDPI) for empirical analysis. 

 

4.3 General carbon productivity change analysis 

According to the emission structure, we disaggregate the total CO2 emissions into 

coal driven, oil driven, and natural gas driven CO2 emissions, and correspondingly, ACPI 

can be disaggregated into several output specific carbon productivity indicators, namely, 

GCPI, CDPI, ODPI and NDPI. Here, we primarily focus on discussing the contribution of 

different specific energy driven carbon emissions in carbon productivity change, i.e., the 

latter three indicators. 



 

Figure 2(a) illustrates the cumulated ACPI of 37 countries and regions from 1995 to 

2009. It shows that there is an overall upward trend on the aggregated carbon 

productivity indicator, but the increase trend is not consistent. More specifically, it 

declines from 1995 to 2000, increases since 2001, whereas shows a drop during 2008–

2009. In addition, the cumulated indicator switches from negative to positive since 2005. 

According to this trend, our study period is further divided into three stages: 1995–2000, 

2000–2005 and 2005–2009 in the following discussions. 

[Insert Figure 2 here] 

 

Figure 2(b) shows the disaggregated carbon productivity indicators of three specific 

energy driven CO2 emissions from ACPI. It can be seen that during 1995-2000, the 

carbon productivity decreases of all three specific energy driven CO2 emissions together 

cause the decline on ACPI, and in which, NDPI is the primary contributor because of its 

continuous decrease. However, during 2000-2005 and 2005-2008, these three carbon 

productivity indicators begin to increase, and they together escalate ACPI. It also can be 

seen that the increase patterns of CDPI, ODPI and NDPI are quite similar since 2001, and 

in which, ODPI shows the highest growth rate, but the increase on NDPI is still lower 

than the other two carbon productivity indicators. This finding indicates that since 2001, 

the oil driven carbon productivity experiences the most significant increase which 

primarily promotes the aggregated carbon productivity growth. 

In order to identify the driving force of the changes on the above carbon 

productivity indicators, we further decompose these carbon productivity indicators of 

individual energy driven CO2 emissions into three components of BPC, PEC and SEC. The 

results are presented in Table 3 which firstly shows that all the individual energy driven 

carbon productivities experience significant declines during 1995–2000 and significant 

increases during 2005–2009. Over the entire study period of 1995–2009, the increase on 

BPC promotes the growth of all three specific energy driven carbon productivity 

indicators, and BPC is the primary driving force for the growth of CDPI and ODPI. This 

indicates that the gaps between the global and single period technology frontier with 

regard to the use of coal, oil and natural gas reduce on average, and technical progress 

(characterized by the decrease on best practice gaps) on the utilization of coal and oil 

contributes most for the correspondingly carbon productivity growth. In addition, the 

improvement on PEC also positively contributes to all three specific energy driven 

carbon productivity indicators, but the contributions are relatively small, which 

indicates that pure efficiency increase (i.e., catching-up effects) on the utilization of coal, 

oil and natural gas also plays a positive role on carbon productivity growth. At last, SEC 

of all three specific energy driven carbon productivities significantly decreases, 

indicating that scale efficiency on energy utilization obviously declines and thus 

decelerates the growths of all three specific energy driven carbon productivities. 

[Insert Table 3 here] 

 



 

4.4 Carbon productivity change analysis based on energy consumption group of 

countries 

For providing a comparative analysis of the difference in carbon productivity 

indicators in different countries characterized by specific energy consumption structure, 

in this section, we classify the 37 major emitting countries and regions into two groups 

according to each country’s or region’s dominated consumption of energy resource. 

These two groups are coal-based group and oil-and-natural gas-based group. Because 

the oil consumption dominated countries are also characterized by high rate 

consumption of natural gas (i.e., 14 in 37 countries or regions), and there are only a few 

countries are dominated by natural gas consumption in our sample (i.e., 3 in 37 

countries or regions). Therefore, we combine oil consumption dominated countries and 

natural gas consumption dominated countries together in one group. 

The box plot of average ACPI for the two groups during each study period are 

illustrated in Figure 3. During the period 1995–2000, the median of carbon productivity 

indicator of oil/natural gas-based group is higher than that of coal-based group, and the 

average of indicators of coal-based and oil-and-natural gas-based groups are -0.085 and 

-0.076, respectively. There are 63% countries in the coal-based group and 62% countries 

in oil-and-natural gas-based group show decrease on carbon productivity, and the 

decrease in coal-based group is much more obvious than that in oil-and-natural 

gas-based group. 

But this situation reverses in the following period. During 2000–2005, the 

coal-based group presents higher median and average on carbon productivity indicators 

than those of the oil-and-natural gas-based group. However, it can be seen that the 

carbon productivity change of coal-based group slightly regresses during 2005–2009, 

which may be caused by more severe impact of international finance crisis that stated in 

2007 in those coal consumption dominated countries, while the carbon productivity 

change of oil-and-natural gas-based group slightly increases during the same period. 

These findings imply that coal consumption dominated countries may be more sensitive 

on carbon productivity changes when facing economic fluctuations. This phenomenon 

may be interpreted as those oil-and-natural gas consumption dominated countries have 

more advanced mature technology on energy utilization and carbon control in their 

industry sectors. However, most of the coal consumption dominated countries are 

economically less developed countries and have immature technology on carbon control. 

Moreover, economic cycles have a violently impact on the industrial sector, and the gross 

outputs of industrial sector account for a large proportion of GDP in coal consumption 

dominated countries. Thus these countries will experience a severer shock in the face of 

economic fluctuations. 

[Insert Figure 3 here] 

 

In order to achieve a better understanding of the sources of ACPI change for the two 

groups, the decomposition of average ACPI into BPC, PEC and SEC is further reported in 

Table 4. The last row presents that both two groups show the rise in ACPI during the 

entire study period. It can be seen that for most time in the study period, technical 



 

progress and pure efficiency improvement are the primary driving forces for the growth 

of ACPI, while scale efficiency changes always provide negative contributions on the 

growth of ACPI both in the coal consumption dominated countries and the oil/natural 

gas consumption dominated countries. This finding implies that the major emitting 

countries and regions in this study have failed on average in moving to more optimal 

scales of producing industry products and emitting carbon emissions, and this 

regression is more obvious in coal consumption dominated countries. The possible 

reason is that there are 50% of coal consumption dominated countries are developing 

countries in our sample which are still in the development stage of industrialization and 

urbanization. Their economic growth and carbon productivity improvement are mostly 

driven by investment rather than consumption. Therefore, for these countries, it is 

necessary to restructure their economic growth mode, accelerate the transformation of 

industry sectors, improve energy efficiency and optimize the energy consumption 

structure with a view to efficiently mitigating carbon emissions. Accordingly, policies 

focused on researching and developing advanced energy utilization and carbon control 

technologies might not be enough, more efforts are required from policymakers to 

encourage economic scale management and technical efficiency catching-up among 

group members. 

[Insert Table 4 here] 

 

4.5 Carbon productivity change analysis for specific countries and regions 

In this section, we additionally compare the carbon productivity indicators, 

including ACPI and its three specific energy driven carbon productivity indicators, 

among the 37 major emitting countries and regions. Figure 4 illustrates the average ACPI 

and its disaggregation indicators (CDPI, ODPI and NDPI) and decomposition indicators 

(BPC, PEC and SEC) over the entire study period. According to ACPI, it can be seen from 

Figure 4(a) that more than 70% countries and regions whose ACPI range from 0.6% to 

18% experience carbon productivity growths. Among these countries and regions, China 

shows the highest average growth rate (17.7%), followed by Luxembourg (14.6%), 

Austria (10.0%) and Belgium (7.6%). Their carbon productivity growths are all driven 

by the reduction on best practice gaps, i.e., technical progress. In Figure 4(a), all western 

European countries show carbon productivity increase, indicating that western 

European countries still play a significant role in leading carbon productivity growth in 

the world. Moreover, since China is the largest country of energy consumption and CO2 

emissions, the highest growth of carbon productivity implying that it will play an 

increasing role in the effort of energy conservation and carbon emissions reduction. On 

the contrary, there are 11 countries and regions show carbon productivity decrease 

(range from -0.7% to -21.0%) and in which, 5 countries show the most significant 

productivity declines: Greece, Portugal, Bulgaria, Brazil and Romania. Except for Brazil, 

the other four countries are all southern and eastern European countries. Their 

production structure is oriented to industrial activities which produce serious pollutions. 

Moreover, environmental awareness of citizens and environmental regulations are 

relatively weak in these countries. BPC decrease and PEC decrease are the primary 



 

driving forces for carbon productivity decline in Greece, Portugal and Romania, while 

SEC decrease primarily causes carbon productivity decline in Bulgaria and Brazil. 

[Insert Figure 4 here] 

 

Figure 4(b)–(d) further show the decomposition of coal, oil and natural gas driven 

carbon productivity indicators. Firstly, concerning CDPI shown in Figure 4(b), China, 

Austria, Luxembourg, Lithuania and Latvia show the most obvious coal driven carbon 

productivity increase, in which, technical progress on energy utilization and carbon 

control is the primary driving force for the former three countries and scale efficiency 

increase in the primary driving force for the latter two countries. Technical progress also 

plays the primary role in coal driven carbon productivity growth in Belgium, Spain, 

Sweden and France. In addition, the catching-up effect (i.e., pure technical efficiency 

increase) primarily leads coal driven carbon productivity growth in Russia, Turkey and 

Canada. Greece and Portugal show the most obvious decline on coal driven carbon 

productivity, followed by Mexico, Slovenia and Bulgaria. 

Secondly, regarding ODPI shown in Figure 4(c), most obvious oil driven carbon 

productivity increases happen in China, Luxembourg and Belgium which are all driven 

by the promotion on BPG, while the most obvious oil driven carbon productivity 

decreases come from Greece, Bulgaria and Portugal. Technical progress is the largest 

driving force for 16 countries and regions shown oil driven carbon productivity growth, 

while pure technical efficiency decrease and scale efficiency decrease are the largest 

driving force for 6 and 5 countries shown oil driven carbon productivity decline, 

respectively. 

Thirdly, according to NDPI shown in Figure 4(d), few countries show natural gas 

driven carbon productivity growth: Luxembourg, China, Austria, Japan and Belgium, 

whose productivity growths are all come from technical progress. On the contrary, 12 

countries and regions, e.g., Portugal, Greece, Taiwan, Estonia, Brazil, Spain, Bulgaria, 

Sweden, Korea, Turkey, India and Mexico show natural gas driven carbon productivity 

decline, and technical regress and scale efficiency decline are the primary driving forces 

lead this decline. The natural gas driven carbon productivity rarely changes in the 

remaining 20 countries. 

Finally, the above findings indicate that the decrease on best practice gaps, i.e., the 

progress on technology of energy utilization and related carbon emissions control is the 

most important driving force for the growths on all three energy specific carbon 

productivity indicators (CDPI, ODPI and NDPI), which account for 58%, 68% and 56% of 

their growths, respectively. In other words, to promote technical progress on energy 

utilization and carbon control should be assigned priority in policy making and 

considered the prior action for further promoting carbon productivity. Meanwhile, it is 

also essential to encourage technical efficiency catching-up and economic scale 

management. Regarding to specific measures of environmental policy, promoting 

research and development on energy conservation and carbon emissions reduction 

technologies would be highly recommended. These measures include transferring 

low-carbon technologies such as carbon capture, usage and storage (CCUS) technology 



 

from developed countries to developing countries, or encouraging the installation and 

employment of pollutant emission scrubber. Likewise, enhancing management in energy 

efficiency promotion, such as exploring low-carbon community operation mode, 

implementing stricter air pollution reduction and carbon emissions control regulations 

in high-pollution projects, should be considered in the policy making of economic 

development. Lastly, constructing market based energy conservation and emission 

control mechanism (e.g., the introduction of carbon emissions trading system as well as 

resources tax and carbon tax) would also be a reasonable means of improving carbon 

efficiency and productivity. 

 

5 Conclusions 

The evaluation of carbon productivity helps to formulate energy and environmental 

policies and prioritize actions for economic growth, resources saving, and emission 

reduction, which consequently makes the effort on climate change mitigation and 

sustainable development accountable. In this study we propose a carbon productivity 

indicator based on an endogenous directional distance function (DDF) selecting 

approach and a global Luenberger productivity indicator for computing the carbon 

productivity changes of 37 major emitting countries and regions worldwide. We 

additionally investigate the sources of the carbon productivity change from the 

traditional decomposition perspective of identifying the best practice gap change (i.e., 

technical progress or regress), pure efficiency change, and scale efficiency change, and 

from a new disaggregation perspective of additionally identifying the contribution of 

specific desirable output factor (e.g., gross outputs of industry) and undesirable output 

factors (e.g., coal driven, oil driven and natural gas driven CO2 emissions) to carbon 

productivity change. 

The global Luenberger carbon productivity indicator is applied to evaluate the 

carbon productivity change in different energy driven CO2 emissions of 37 major 

emitting countries and regions over 1995–2009 in this study. The main findings are 

summarized as follows. (i) The approach of endogenous direction that identifies the 

largest improvement potentials is significantly different from the approach of exogenous 

directions in calculating the inefficiency scores of undesirable outputs, and this finding 

verifies the necessity of alternatively utilizing the endogenous DDF for evaluating carbon 

efficiency and productivity. (ii) The comparative analysis reveals that the carbon 

productivity indicator calculated with the consideration of carbon emission structure 

(i.e., carbon emissions from different energy sources) provides a more significant 

estimation on carbon productivity change. (iii) On the average of all 37 major emitting 

countries and regions, the carbon productivity significantly increases over the study 

period, and the primary driving forces for this increase can be attributed to the decrease 

of best practice gaps (i.e., technical progress) and pure efficiency improvement (i.e., 

catching-up effect). However, scale efficiency decrease drags the carbon productivity 

growth. (iv) Coal consumption dominated countries may be more sensitive on carbon 

productivity changes than oil and natural gas consumption dominated countries when 

facing economic fluctuations. (v) Policies focused on promoting advanced energy 

utilization and carbon control technologies should be assigned priority; while technical 



 

efficiency catching-up and economic scale management should also be encouraged for 

further improving carbon productivity. 
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Tables & Figures 

 

Table 1 Output factor specific inefficiency scores (averages of period 1995-2009)  

Countries/ 
regions 

Gross outputs 
of industry 

 
Coal driven 
CO2 emissions 

 
Oil driven 
CO2 emissions 

 
Natural gas driven 
CO2 emissions 

ED OVD UVD  ED OVD UVD  ED OVD UVD  ED OVD UVD 

Australia 0.511  0.124  0.005   0.948  0.124  0.026   0.306  0.124  0.042  0.886  0.124  0.101  
Austria 0.247  0.187  0.015   0.578  0.187  0.520   0.085  0.187  0.189  0.770  0.187  0.324  
Belgium 0.073  0.147  0.019   0.640  0.147  0.582   0.389  0.147  0.148  0.826  0.147  0.331  
Bulgaria 3.204  0.963  0.185   0.833  0.963  0.050   0.897  0.963  0.099  0.958  0.963  0.158  
Brazil 0.655  0.487  0.005   0.490  0.487  0.182   0.713  0.487  0.015  0.803  0.487  0.085  
Canada 0.383  0.366  0.056   0.841  0.366  0.869   0.540  0.366  0.329  0.951  0.366  0.501  
China(mainland) 0.000  0.048  0.001   0.601  0.048  0.001   0.493  0.048  0.006  0.414  0.048  0.049  
Czech Republic 0.395  0.187  0.024   0.976  0.187  0.054   0.370  0.187  0.176  0.950  0.187  0.196  
Germany 0.350  0.202  0.027   0.829  0.202  0.301   0.189  0.202  0.270  0.821  0.202  0.590  
Denmark 0.368  0.307  0.020   0.794  0.307  0.305   0.477  0.307  0.125  0.790  0.307  0.504  
Spain 0.554  0.420  0.028   0.769  0.420  0.548   0.353  0.420  0.208  0.813  0.420  0.805  
Estonia 1.175  0.672  0.048   0.856  0.672  0.055   0.571  0.672  0.155  0.779  0.672  0.355  
Finland 0.279  0.225  0.018   0.885  0.225  0.226   0.366  0.225  0.153  0.839  0.225  0.527  
France 0.177  0.227  0.010   0.477  0.227  0.565   0.261  0.227  0.108  0.790  0.227  0.340  
United Kingdom 0.047  0.052  0.015   0.851  0.052  0.251   0.269  0.052  0.166  0.942  0.052  0.202  
Greece 0.400  0.452  0.004   0.810  0.452  0.026   0.605  0.452  0.016  0.572  0.452  0.213  
Hungary 0.868  0.495  0.104   0.929  0.495  0.491   0.567  0.495  0.399  0.977  0.495  0.310  
India 0.001  0.535  0.017   0.986  0.535  0.022   0.839  0.535  0.054  0.911  0.535  0.298  
Ireland 0.036  0.174  0.027   0.724  0.174  0.572   0.490  0.174  0.223  0.853  0.174  0.753  
Italy 0.310  0.209  0.010   0.493  0.209  0.527   0.343  0.209  0.084  0.914  0.209  0.164  
Japan 0.076  0.143  0.013   0.803  0.143  0.324   0.170  0.143  0.174  0.781  0.143  0.599  
Korea 0.200  0.426  0.043   0.938  0.426  0.312   0.652  0.426  0.238  0.896  0.426  0.933  
Lithuania 0.785  0.586  0.009   0.665  0.586  0.342   0.697  0.586  0.034  0.913  0.586  0.069  
Luxembourg 0.000  0.133  0.002   0.289  0.133  0.110   0.477  0.133  0.011  0.596  0.133  0.045  
Latvia 0.395  0.276  0.022   0.705  0.276  0.334   0.772  0.276  0.043  0.965  0.276  0.093  
Mexico 0.459  0.412  0.012   0.762  0.412  0.242   0.849  0.412  0.022  0.959  0.412  0.081  
Netherlands 0.326  0.149  0.005   0.723  0.149  0.151   0.472  0.149  0.037  0.950  0.149  0.051  
Poland 0.262  0.386  0.029   0.989  0.386  0.039   0.671  0.386  0.142  0.945  0.386  0.331  
Portugal 0.274  0.298  0.018   0.679  0.298  0.357   0.468  0.298  0.111  0.643  0.298  0.581  
Romania 2.084  0.874  1.045   0.525  0.874  0.420   0.875  0.874  0.425  0.975  0.874  0.393  
Russia 1.099  0.198  0.073   0.618  0.198  0.043   0.868  0.198  0.050  0.986  0.198  0.022  
Slovak Republic 0.238  0.149  0.035   0.957  0.149  0.159   0.507  0.149  0.226  0.978  0.149  0.142  
Slovenia 0.059  0.403  0.043   0.920  0.403  0.248   0.726  0.403  0.195  0.896  0.403  0.866  
Sweden 0.000  0.011  0.000   0.243  0.011  0.022   0.320  0.011  0.003  0.199  0.011  0.042  
Turkey 0.799  0.274  0.026   0.727  0.274  0.028   0.911  0.274  0.019  0.951  0.274  0.091  
Taiwan 0.000  0.131  0.005   0.518  0.131  0.028   0.515  0.131  0.027  0.393  0.131  0.175  
USA 0.221  0.115  0.056   0.924  0.115  0.500   0.476  0.115  0.444  0.927  0.115  0.873  
Average 0.468  0.309  0.056   0.738  0.309  0.266   0.528  0.309  0.140  0.825  0.309  0.330  

 

  



 

 

Table 2 KW test for inefficiency scores (H0: two methods have the same ranks) 

Gross outputs of industry OVD ED 

UVD 43.689(0.000) 41.892(0.000) 

OVD  -1.797(0.810) 

Coal driven CO2 emissions OVD ED 

UVD 4.649(0.534) 49.230(0.000) 

OVD  44.581(0.000) 

Oil driven CO2 emissions OVD ED 

UVD 25.622(0.001) 52.581(0.000) 

OVD  26.959(0.000) 

Natural gas driven CO2 emissions OVD ED 

UVD 0.311(0.967) 47.568(0.000) 

OVD  47.257(0.000) 

Note: Significant level at 5%; numbers without parentheses are test statistics; numbers in 

parentheses are P-value. 

 

Table 3 Decomposition of specific energy driven carbon productivity indicator 

Indicators 1995-2000 2000-2005 2005-2009 1995-2009 
CDPI -0.005 0.002 0.026 0.007 
BPC_coal 0.007 0.007 0.018 0.010 
PEC_coal 0.002 0.008 0.016 0.008 
SEC_coal -0.014 -0.013 -0.008 -0.012 

ODPI -0.015 0.012 0.031 0.008 
BPC_oil -0.006 0.021 0.027 0.013 
PEC_oil -0.006 0.004 0.014 0.003 
SEC_oil -0.003 -0.013 -0.009 -0.008 

NDPI -0.016 0.000 0.015 -0.002 
BPC_natural gas -0.005 0.012 0.000 0.003 
PEC_natural gas 0.005 0.008 0.013 0.008 
SEC_natural gas -0.016 -0.020 0.002 -0.012 

 

 

Table 4 Average ACPI and its decomposition for different energy consumption group 

  
Coal-based group Oil-and-natural gas-based group 

ACPI BPC PEC SEC ACPI BPC PEC SEC 

1995-2000 -0.086  -0.093  0.117  -0.109  -0.076  -0.022  -0.032  -0.022  

2000-2005 0.081  0.185  0.001  -0.104  0.044  0.059  0.023  -0.038  

2005-2009 0.037  0.068  0.002  -0.034  0.058  0.040  0.046  -0.028  

1995-2009 0.011  0.053  0.040  -0.082  0.009  0.026  0.012  -0.029  

 

  



 

 

 

Figure1 Average annual ICPI and ACPI 

 

 

 

Figure 2 Cumulated ACPI and individual carbon productivity indicators of three energy driven 

CO2 emissions 
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Figure 3 Box plot of average ACPI for different energy consumption groups 

  



 

 

Figure 4 Carbon productivity indicators for specific countries and regions 
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(a) ACPI and its decomposition
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(b) CDPI and its decomposition
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(c) ODPI and its decomposition

BPC PEC SEC ODPI
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(d) NDPI and its decomposition

BPC PEC SEC NDPI


