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Abstract: Given that different energy inputs play different roles in production and that energy 

policy decision making requires an evaluation of productivity change in individual energy 

input to provide insight into the scope for improvement of the utilization of specific energy 

input, this study develops, based on the Luenberger productivity indicator and data 

envelopment analysis models, an aggregated specific energy productivity indicator combining 

the individual energy input productivity indicators that account for the contributions of each 

specific energy input towards energy productivity change. In addition, these indicators can be 

further decomposed into four factors: pure efficiency change, scale efficiency change, pure 

technology change, and scale of technology change. These decompositions enable a 

determination of which specific energy input is the driving force of energy productivity 

change and which of the four factors is the primary contributor of energy productivity change. 

An empirical analysis of China’s energy productivity change over the period 1997-2012 

indicates that (i) China’s energy productivity growth may be overestimated if energy 

consumption structure is omitted; (ii) in regard to the contribution of specific energy input 

towards energy productivity growth, oil and electricity show positive contributions, but coal 

and natural gas show negative contributions; (iii) energy-specific productivity changes are 

mainly caused by technical changes rather than efficiency changes; (iv) the Porter Hypothesis 

is partially supported in China that carbon emissions control regulations may lead to energy 

productivity growth. 

Keywords: Carbon emissions; Data envelopment analysis; Driving force; Input specific 

productivity indicator 

 

1 Introduction 

China attracts global attention not only for its rapid economic growth but also for its rapid 

increases in energy consumption and carbon emissions. China has been the world’s second 

largest economy since 2013 (World Bank, 2014) and the largest energy-consuming country 

since 2011 (EIA, 2014). In addition, China has been responsible for the highest carbon 

emissions from fuel combustion (CDIAC, 2013), accounting for more than 20% of global 

CO2 emissions since 2007. One of the goals of China’s strategy for constructing a 

resource-saving and environmental friendly society and pursuing sustainable development is a 

reduction in carbon intensity (CO2 emissions per GDP) by 40-45% by 2020 compared to the 

nation’s 2005 level. Because the primary aim of social and economic development policy in 

China continues to be the maintenance of economic growth, to reduce its growth rates of 

carbon emissions requires an increase in both resource (especially energy) utilization 
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efficiency and environmental efficiency. Another goal of China’s sustainable development is 

the increase in energy efficiency defined as a reduction in energy intensity (energy 

consumption per GDP) by 32% by 2015 compared to the nation’s 2005 level (SCC, 2007, 

2011). This reduction also indicates an increase in energy efficiency. In addition, energy 

efficiency is a key indicator for issues on energy security maintenance and climate change 

mitigation. 

Total factor energy efficiency is a widely used concept for energy efficiency measurement 

(e.g., Hu and Wang, 2006; Zhou and Ang, 2008; Wang H. et al., 2013; Wang K. et al., 2014). 

It is defined as the ratio between optimized energy input and actual energy input under a total 

factor framework in which the inputs of labor, capital stock, energy consumption, and other 

resources, as well as GDP output, are all taken into consideration. Furthermore, the concepts 

of environmental energy efficiency or ecological energy efficiency, as the extension of total 

factor energy efficiency, were proposed, in which the environmental factors such as air 

pollutants and carbon emissions from the combustion of fossil energy were taken into account 

(e.g., Zhang C. et al., 2011; Sueyoshi and Goto, 2011, 2012a; Wang Q. et al., 2012; Wang K. 

2013b, 2013c; Zhang N. et al., 2014; Yang and Yang, 2015). These studies have defined 

energy and environmental efficiency as the ratio between environmental impact added 

(undesirable output) plus economic value added (desirable output) and energy consumed. 

Energy and environmental efficiency is closely related to sustainability and is one of the 

indicators of the performance of energy utilization, economic development, and 

environmental protection under the notion of sustainable development (Mahlberg and 

Luptacik, 2014). It aims at achieving more economic outputs, consuming fewer resources 

(especially energy input), and producing fewer pollutant emissions. Therefore, measuring the 

energy and environmental efficiency of China is important to understanding the status and 

trends of energy consumption, economic growth, and environmental regulation; identifying 

the efficiency benchmark and efficiency-influencing factors; and ascertaining efficiency 

improvement areas and potentials. It makes sustainability accountable and helps to formulate 

policies and prioritize actions in China for economic growth, energy conservation, and carbon 

emissions control. Furthermore, in this study, we take CO2 emissions into consideration when 

calculating energy and environmental efficiency, which serve to benchmark energy 

performance and assess its potential for CO2 emissions reduction (Zhou et al., 2012). In 

addition, because China’s sustainable development strategies and policies are proposed in the 

goals and regulations of both energy conservation and emissions reduction, and the realization 

of emissions reduction can be derived not only from energy saving but also from energy 

utilization efficiency promotion, energy consumption structure adjustment and optimization, 

as well as carbon capture and storage (CCS), etc., it is worthwhile to simultaneously evaluate 

China’s energy and environmental efficiency to provide a more in-depth understanding of 

China’s efforts on energy saving and emissions control. 

In this study, we assume that decision making units (DMUs, the provinces in China) try to 

consume fewer inputs (energy) and minimize undesirable outputs (emissions) without 

affecting the desirable output (GDP). An efficiency analysis of the province requires a 

measurement of performance characterized by an energy and environmental efficiency 

frontier indicating efficient benchmarks related to the optimized objective of energy 

consumption and emissions. That is, provinces lying on the efficiency frontier are not able to 

reduce any energy input or emissions without reducing its economic outputs. These provinces 

are defined as efficient. A non-parametric method of data envelopment analysis (DEA) helps 



 

to identify such an efficiency frontier by defining efficiency as the ratio of a weighted sum of 

desirable outputs to a weighted sum of inputs; in addition, the weighted sum of undesirable 

outputs is also taken into consideration by specific technique (e.g. Färe et al., 1989; Färe and 

Grosskopf, 1996; Sahoo et al., 2011; Sueyoshi and Goto, 2012b; Wang K. et al., 2012; 

Mahlberg and Luptacik, 2014). DEA endogenously generates the most favorable weights2 

through linear programming optimization, which maximizes the desirable outputs or 

minimizes the inputs of a province under evaluation in comparison with the maximum 

attainable desirable outputs or the minimum attainable inputs. 

The energy and environmental efficiency identified by a DEA model is purely a static 

efficiency measurement at a specific period that does not provide further information about 

energy and environmental efficiency change or production technology change over time. 

Chung et al. (1997) introduced a directional distance function model and, based on this model, 

proposed a productivity index that jointly models the productivity change of both desirable 

and undesirable outputs over time. In this study, we also try to extend the static energy and 

environmental efficiency analysis to an intertemporal energy and environmental productivity 

change analysis. The input-specific Malmquist productivity index (Färe et al. 1989, 1994; 

Caves et al., 1982) and the input-specific Luenberger productivity indicator (Chambers et al., 

1996) are two indicators that are commonly used to calculate productivity change and its 

components, e.g., change in efficiency and technical change. The input-specific Malmquist 

productivity index has a ratio structure, while the input-specific Luenberger productivity 

indicator has an additive structure. The input-specific Malmquist productivity index is 

typically associated with the Russell measure (Färe et al., 1982, 1985) or the enhanced 

Russell measure (Pastor et al., 1999) of inefficiency which is multiplicative by nature, and the 

input-specific Luenberger productivity indicator is related to slack-based measure of 

efficiency in the directional distance function (Färe and Grosskopf, 2010) or the directional 

Russell measure of inefficiency (Fukuyama and Weber, 2009), which is additive by nature. 

For a decomposition of the productivity index, on one hand, Färe et al. (1992) derived a 

Malmquist index based on an input-oriented model for measuring productivity change and 

disaggregated it into sub-indicators measuring changes in efficiency and technology. Based on 

an output-oriented model, Färe et al. (1994) later provided an alternative decomposition for 

identifying changes in efficiency, scale and technology. Simar and Wilson (1998) additionally 

decomposed the Malmquist index into four factors: changes in pure efficiency, scale 

efficiency, pure technology and scale of technology. This latter decomposition was also 

implemented inter alia by Wheelock and Wilson (1999) and Zofio (2007). On the other hand, 

Chambers et al. (1996) and Färe et al. (2008) decomposed the Luenberger productivity 

indicator into its efficiency change and technical change components. This measure is 

constructed from the directional distance functions which could adjust inputs and outputs 

simultaneously. Thus, in this study, we take the Luenberger productivity indicator to measure 

and decompose China’s energy and environmental productivity change. In addition, inspired 

by the decomposition of the Malmquist index in Simar and Wilson (1998), this study 

decomposes the Luenberger energy and environmental productivity indicator into four factors 

that identify pure efficiency change, scale efficiency change, pure technology change, and 

change on the scale of technology in China. According to Zofio (2007), this four-factor 
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decomposition is a comprehensive decomposition that relies on generally accepted definitions 

of productivity change as well as technological and efficiency change from both technical and 

scale perspectives, thereby avoiding the scale bias of technical change. 

As noted by Mahlberg and Luptacik (2014), Chang et al. (2012), Mahlberg and Shaoo (2011), 

and Wang C. (2011), different inputs play different roles in the production process3, and a 

Malmquist index or Luenberger indicator associated with radial efficiency measures is not 

capable of attributing energy and environmental productivity change to changes in the 

utilization of specific energy inputs or the production of specific undesirable outputs. To 

overcome this limitation, this study develops, following the input-specific productivity change 

measures of Kapelko et al. (2015) and Mahlberg and Shaoo (2011), a Luenberger energy and 

environmental productivity indicator, which are shown as an aggregation of individual 

energy-specific productivity indicators and specific undesirable output productivity indicators. 

These decompositions enable us to examine the contributions of each individual energy input 

and undesirable output towards productivity change and its four components. Although Wang 

C. (2007) and Wang C. (2013) have also provided novel study frameworks to decompose 

energy productivity change into several components as efficiency and technical changes as 

well as changes in the capital-energy ratio, labor-energy ratio, energy supply structure and 

output structure4, our decomposition provides a different perspective for understanding which 

specific energy inputs are the driving forces of energy productivity change. 

The current study also differs from that of Kapelko et al. (2015), which provides a 

decomposition of input-specific productivity growth, yet only accounts for three factors (i.e., 

efficiency change, technical change under variable returns to scale, and scale efficiency 

change) and does not consider undesirable outputs. The current study is also different from 

those of Mahlberg and Shaoo (2011) and Mahlberg and Luptacik (2014), which measure 

input-specific eco-efficiency and eco-productivity change with the consideration of 

undesirable outputs while decomposing eco-productivity change into the two factors of 

efficiency change and technical change. Similar two-component decomposition can also be 

found in Yang and Yang (2015)’s energy and environmental productivity evaluation5, Wu et al. 

(2012)’s energy productivity evaluation (with the constraints of carbon emissions), Chen et al. 

(2014)’s industrial total factor productivity evaluation 6 , and Zhang and Ye (2015)’s 

environmental total factor productivity evaluation. Furthermore, our study goes one step 
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for their carbon emissions factors are varied (Liu et al., 2015). 
4 These studies examine the contributions of technical progress as well as the changes in ratios of 

non-energy input over energy input to energy productivity change or energy intensity change of both 
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5 Energy input, GDP desirable output and SO2 undesirable output are utilized for estimation, while the 

effect of energy consumption structure is omitted in this study. 
6 One shortage of this study is that the homogeneity of DMU is likely to be violated because different 

industrial sectors are operating in different markets, facing different technologies, and using different input 

factors. 
 



 

further than the decomposition of Simar and Wilson (1998), Wheelock and Wilson (1999) and 

Zofio (2007) in regard to the Malmquist index associated with the Shephard efficiency 

measure, as we provide an energy input-specific and undesirable output-specific Luenberger 

productivity change measurement and its decomposition in association with the directional 

Russell measure of inefficiencies. 

In this study, the Luenberger energy and environmental productivity indicators and 

decomposition are further applied to an empirical analysis of energy and environmental 

productivity change in China during the period 1997-2012. The results of this analysis allow 

us to infer which energy inputs and/or emission outputs are the driving forces of productivity 

change, and which of the four aforementioned factors is the primary contributor of 

productivity change. To the best of our knowledge, this study provides the first attempt to 

analyze energy input-specific and environmental productivity change in China. The remainder 

of this paper is structured as follows. Section 2 presents the DEA based models and 

Luenberger indicators in detail. Section 3 describes the data. Section 4 reports and discusses 

the results of our empirical analysis. Section 5 concludes this paper. 

 

2 Methodology 

2.1 Energy and environmental inefficiency measurement 

Under the total factor efficiency evaluation framework, a province could employ energy (e) 

and other resources (x) such as capital and labor as inputs to generate gross domestic product 

(g) as the desirable output; thus the production technology set can be defined as T = {(e, x, g): 

(e, x) can produce (g)}, where T is a closed set and inputs and desirable outputs are assumed 

to be strongly disposable. Suppose that there are j=1,2,…,n provinces, and the input and 

output set of the jth province at period t is defined as ( , ,t t t

hj ij rje x g ), implying that there are 

h=1,…,k energy inputs, i=1,…,m non-energy inputs, and r=1,…,s desirable outputs. Then, 

adapting a slacks-based measure of inefficiency in the directional distance function context, 

the integrated energy inefficiency for each province at period t can be obtained by solving the 

following Model (1), in which the directional energy input distance function D(E)t seeks to 

reduce the consumption of energy input 
t

he  at period t. 
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In Model (1), β is a unified energy inefficiency measure for all types of energy inputs, dh 

represents the direction in which energy input 
t

he  can be scaled, and λj is the intensity 

variable that connects inputs and outputs by a convex combination. β=0 and β>0 indicate 

efficient and inefficient in energy utilization, respectively. Note that Model (1) is based on 



 

constant returns to scale (CRS) if the fourth constraint is omitted, or variable returns to scale 

(VRS) if it is functional. Thus, ( )t

CD E  and ( )t

VD E  denote the integrated energy 

inefficiency measure exhibiting CRS and VRS, respectively. 

The energy inefficiency measured by Model (1) is considered to be an integrated/aggregative 

inefficiency measure which does not reflect the inefficiency of a specific energy resource in 

the production process. Thus the energy inefficiency measures obtained from it may lack 

insights if one wants to investigate the different impact and contribution of a specific energy 

resource among all input factors. To solve this shortage of not providing specific energy 

inefficiency measures, we propose the following Model (2), in which each kind of energy 

resource is assigned with a specific inefficiency measure βh, h=1,…,k, and D(SE)t is a Russell 

type of measure (Pastor et al., 1999; Fukuyama and Weber, 2009) in the directional energy 

input distance function context that sums together all of the specific energy inefficiencies. 
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In Model (2), dh also represents the direction in which energy input 
t

he  can be scaled. wh is 

the normalized user specified weight associated with each type of energy input. D(SE)t is 

known as the aggregated specific energy inefficiency measure at period t, and its component 

βh is considered to be the specific energy inefficiency measure. Model (2) is based on CRS if 

the fourth constraint is omitted, or VRS if it is functional. Thus, ( )t

CD SE  and ( )t

VD SE  

respectively denote the aggregated specific energy inefficiency measure exhibiting CRS and 

VRS. 

A limitation of the above Models (1) and (2) is that they do not include pollutant emissions 

caused by the consumption of energy when measuring the energy inefficiency. If we consider 

a production process in which each province employs energy (e) and non-energy (x) inputs to 

generate not only desirable output (g) but CO2 emissions as undesirable output (b), then the 

production technology set will be modified as T’ = {(e, x, g, b): (e, x) can produce (g, b)}. To 

reasonably model production technology that generates both desirable and undesirable outputs, 

we impose joint weak disposability and null-jointness assumptions (Färe et al., 1989) on the 

production technology set, implying that a proportional reduction in both desirable and 

undesirable outputs is necessary; and to produce desirable outputs some undesirable outputs 

must be produced. An aggregated specific energy inefficiency with the consideration of 

undesirable outputs, i.e., energy and environmental inefficiency, for each province at period t 

can then be obtained by solving the following Model (3), in which D(EE)t is a directional 

Russell measure combining the inefficiencies of both specific energy inputs and specific 

undesirable outputs. This directional distance function seeks to remove all slack in energy 



 

inputs and emission outputs. 
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In Model (3), there are f=1,…,l weakly disposable undesirable outputs. βh is the specific 

energy inefficiency measure, and βf is the specific emission or environmental inefficiency 

measure. dh and df respectively indicates the direction in which energy input 
t

he  and emission 

output 
t

fb  can be scaled. wh and wf are, respectively, the normalized user specified weight 

associated with each energy input and each emission output; wE and wB are the normalized 

user specified weights associated with energy inefficiency and environmental inefficiency 

measures, respectively. 

As discussed by Färe et al. (1986), Färe and Grosskopf (2003, 2009), Kuosmanen (2005), and 

Kuosmanen and Podinovski (2009), a DEA model that satisfies VRS, output directional 

distance function, and weak disposability should be formulated as in Model (3), utilizing the 

abatement factor θj, which maintains the proportionality of reductions in desirable and 

undesirable outputs. Model (3) can be simply linearized as follows. First, we alter the 

variables to be 
1

j j j=    and set 
2(1 )j j j− =   ; then we have 

1 2

j j j= +   . Using this 

linearization, Model (3) can be rewritten as Model (4). 
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Model (4) is a linear programming model in terms of the optimization variables 
1

j  and 
2

j . 

( )t

VD EE  represents the combined energy and environmental inefficiency exhibiting VRS. If 



 

we allow for CRS rather than VRS, θj is unnecessary. In that case, we return to Model (3) but 

omit the constraint 
1

1
n

jj=
=  , remove θj, and obtain the optimal value, ( )t

CD EE , which 

represents the combined energy and environmental inefficiency exhibiting CRS. 

Also noteworthy is the imposition of a strict equality constraint, as in the fourth constraint of 

Models (3) and (4), on undesirable outputs (Picazo-Tadeoa and Prior, 2009; Färe and 

Grosskopf, 2010; Zhou et al., 2012; Färe et al., 2014), which may have the disadvantage of 

allowing a downward-sloping portion of the efficiency frontier. To overcome this problem, 

Aparicio et al. (2013) proposed a nested environmental technology which establishes the 

production possibility set of period t as a subset of period t+1. In this study, we follow this 

approach to properly measure the shift in technology. 

 

2.2 Energy and environmental productivity change measurement and decomposition 

Next, we define the Luenberger productivity (LP) indicator as in Equation (5), in which “D(·)” 

represents the various inefficiency measures of D(E), D(SE), or D(EE) from Models (1) to (4). 
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    (5) 

LP can be interpreted as an indicator of productivity change of province j from period t1 to 

subsequent period t2. Values of LP greater than, less than, or equal to 0, respectively indicates 

increase, decrease, or no change in productivity. LP indicator can be further decomposed into 

sub-indicators which respectively measures Luenberger pure efficiency change (LPEC), scale 

efficiency change (LSEC), pure change in technology (LPTC) and change in returns to scale 

of technology (LTSC) as in Equations (6) to (10). 
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( ) ( ) ( , , , ) ( ) ( , , , )

2
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t t t t t t t t t t

C V

t t t t t

C V

LTSC D e x g b D e x g b

D e x g b D e x g b

D e x g b D e x g b

D e x g b D

 =  −  −


 −  +


  −  −


 − ( ) 1 2 2 2 2( , , , )
t t t t te x g b 



    (10) 

LPEC measures the change of contemporaneous pure efficiency at period t1 and t2. LPEC>0, 



 

<0, or =0 indicate increase, decrease, or no change in pure technical efficiency. LSEC 

measures the change in scale efficiency resulted from the movement of province j in its input 

and output space over time or the change in the shape of technology, or a combination of the 

above two changes. LSEC>0, <0, or =0 indicate increase, decrease, or no change in scale 

efficiency. The calculation in the first and second sets of brackets in Equation (8) measures 

the difference between inefficiency scores under VRS and CRS at t1 and t2. LPTC measures 

the pure change in technology, defined as the arithmetic mean of the two differences which 

measure the shift of technology at t1 and t2. LPTC>0, <0, or =0 indicate technical progress 

(i.e., upward shift of technology), technical regress (i.e., downward shift of technology), or no 

change in technology. LTSC measures the change in returns to scale of technology at two 

fixed positions t1 and t2. LTSC is also an arithmetic mean of two differences, each of which 

measures the change in distance between inefficiency scores under VRS and CRS, where (e, x, 

g, b) remains constant. LTSC>0, <0, or =0 indicate that technology is moving toward CRS, 

moving opposite CRS, or undergoing no change. 

We emphasize that ( )1 1 1 1 1

( )( ) , , ,
t t t t t

V CD e x g b  and ( )2 2 2 2 2

( )( ) , , ,
t t t t t

V CD e x g b  can be directly 

obtained by solving the above DEA models with contemporary data, while 

( )1 2 2 2 2

( )( ) , , ,
t t t t t

V CD e x g b  and ( )2 1 1 1 1

( )( ) , , ,
t t t t t

V CD e x g b  can be obtained by solving these 

models with intertemporal data. To reduce infeasible solutions, when calculating the 

intertemporal inefficiency, a combined efficiency frontier of period t1 and t2 is applied instead 

of separately referring to the frontier of period t1 or t2
7. 

Note that Luenberger productivity indicators calculated based on the integrated or aggregated 

inefficiency measures, ( )( )t

V CD E , ( )( )t

V CD SE , and ( )( )t

V CD EE , are not capable of attributing 

energy productivity change to changes in utilizing a specific energy resource. Therefore, we 

further use βh, h=1,…,k, obtained from Model (2) to define D(βh)t, which is the inefficiency 

measure for the hth specific energy input at period t. Through utilizing D(βh)t, the Luenberger 

specific energy productivity indicators enable one to examine the contributions of individual 

energy input to integrated energy productivity change. 

 

3 Data and descriptions 

We utilize the Luenberger productivity indicator to measure and decompose the energy and 

environmental productivity change of China’s 30 provincial-level regions over the period 

1997- 2012, covering the later years of the 9th Five-Year Plan (FYP) period (1997-2000), the 

10th and 11th FYP periods (2001-2005 and 2006-2010), and the beginning years of the 12th 

FYP period (2011-2012). The input variables of labor force, capital stock, and total energy 

consumption, as well as the desirable output variable of GDP and the undesirable output 

variable of CO2 emissions, are utilized. Total energy consumption is further decomposed into 

four major energy consumptions: coal, oil, natural gas, and electricity, which are all final 

                                                             
7 It should be noticed that, the combined efficiency frontier of t1 and t2 helps to eliminate infeasibilities 

only when the reference technology of t2 (including observations from both t1 and t2) is utilized to evaluate 

observations from t1, but it does not eliminate infeasibilities when the reference technology of t1 (including 

observations from both t1 and the period prior to t1) is utilized to evaluate the observations from t2. Thus, 

the combined efficiency frontier of t1 and t2 is just used for evaluating the observations from t1, and the 

efficiency frontier of t1 is used for evaluating the observations from t2. 



 

consumption8. Labor force and GDP data are obtained from the China Statistical Yearbooks. 

Capital stock data are obtained from Shan (2008) and our estimation (Wang et al., 2012; Wang 

et al., 2013a). Data on total energy consumption and specific energy consumptions are 

collected from the China Energy Statistical Yearbook. We estimate CO2 emissions based on 

fossil fuel consumption, conversion factors from physical unit to coal equivalent (NBS, 2013) 

and carbon emissions factors for fossil fuel combustion provided in IPCC (2006). We first 

disaggregate the fossil fuel consumption into sub-item fossil fuel consumptions9 according to 

China’s provincial energy balance pivot tables. These sub-item fossil fuel consumptions are 

then converted into calorific value according to the conversion factors. Third, the sub-item 

fossil fuel consumption-based calorific values of China’s provinces are further translated into 

its CO2 emissions. Thus, data on CO2 emissions are neither directly tied to total energy 

consumption nor directly proportional to the specific energy inputs of coal, oil, or natural gas. 

Monetary data on GDP and capital stock are converted into 2010 constant prices, and data on 

energy consumptions are converted into tonnes of coal equivalent (tce) according to the 

conversion factors. Table 1 summarizes the descriptive statistics of the input and output data 

for selected years. 

[Insert Table 1 here] 

Table 1 shows that China’s total energy consumption increased significantly over the period 

1997-2012, in which an increase in natural gas was most obvious, followed by an increase in 

electricity. However, the proportions of natural gas consumption and electricity consumption 

during the entire study period were relatively low compared with the proportion of coal 

consumption; thus clearly indicating the character of China’s energy resource endowment: 

rich in coal, short of oil, and lacking in natural gas. It can be seen in Figure 1 that although the 

structure of final energy consumption had been promoted with the decreasing share of coal 

and increasing share of other relatively clearer energies, the promotion process was slow. 

Figure 2 shows that the ratio of GDP over energy consumption in China experienced a 

continuous increase during the periods 1997-2002 and 2006-2012; however, this increase was 

temporarily interrupted in 2003 and 2005. This indicates that China’s GDP outputs grew 

faster than its energy input in general, but the improvement was not continuous. Based on 

these phenomena, we expect an overall increase in energy productivity for China over our 

study period, while the productivity changes over different FYP periods may vary. 

[Insert Figures 1 and 2 here] 

 

4 Empirical results 

We calculate three types of productivity indicators that denote integrated energy productivity 

change, aggregated specific energy productivity change, and energy and environmental 

productivity change. Differences between the first and second indicators reveal the effect of 

energy consumption structure in energy productivity change analysis, while differences 

between the second and third indicator denote the effect of environmental concerns or 

                                                             
8 Final energy consumption refers to the total energy consumption in the region in a given period but 

excludes the consumption in conversion of the primary energy (e.g., coal, oil, natural gas) into the 

secondary energy (electricity) and the loss in the process of energy conversion. Thus, the final energy 

consumptions (instead of total energy consumption) of coal, oil, natural gas, and electricity are used for 

calculation in this study so as to avoid double counting. 
9 Including the final consumption and the consumption in conversion (from primary energy into secondary 

energy) of raw coal, cleaned coal, other washed coal, briquettes, coke, coke oven gas, other gas, crude oil, 

gasoline, kerosene, diesel oil, fuel oil, liquefied petroleum gas, refinery gas, and natural gas. 



 

environmental regulations on energy productivity analysis. 

When measuring these productivity changes, calculations are undertaken between two 

consecutive years, and the directional vectors (dh, df) utilized are the actual energy input 

(combined or specific) level and actual emission output level of each province at each year10. 

These directional vectors guarantee that the inefficiency measures of βh and βf are 

unit-invariant. As indicated in Briec and Kerstens (2009), the directional distance function 

based intertemporal inefficiency measures may yield infeasibilities11. The same problem 

occurs in our calculation accounting for an approximate 7% of the initial example of 

intertemporal inefficiency measures. We remove these infeasibilities from the calculation of 

the mean values of productivity indicators. 

It should be noted that due to interprovincial energy trade and commuting, our observations in 

this study are not absolutely economically independent, i.e., provinces may influence each 

other through neighborhood effects (Anselin, 1988; LeSage and Pace, 2009; Burnett et al., 

2013). In the case of DEA application, if observations are not independent, the inefficiency 

estimation may be biased if viewed from a long-term performance point of view. To reduce 

the estimation bias, we divide the study period into four periods which contain 2 to 5 years of 

observations according to data availability, and calculate the productivity indicators in each 

period individually. The length of each study period herein is shorter than that used in 

Mahlberg and Shaoo (2011) and Zhang C. et al. (2011). Although this may not completely 

eliminate the possible estimation bias caused by neighborhood effects, it helps to alleviate 

such bias through short-term estimation. 

 

4.1 Integrated energy productivity change 
The integrated energy productivity indicator in China and its decomposition are reported in 

the second to the sixth rows of Table 2. It can be seen that China’s integrated energy 

productivity change is positive (1.77%) on average over the period 1997-2012, yet this 

growth is inconsistent. The latter four years of the 9th FYP period and the beginning two years 

of the 12th FYP period show the most significant productivity growth (4.48% and 2.01%); 

however, productivity change is negligible in the 10th FYP period (0.02%). 

[Insert Table 2 here] 

The data in columns 4 to 7 of Table 2 present the contributions to integrated energy 

productivity change from pure efficiency change, scale efficiency change, pure change in 

technology, and change in returns to scale of technology. For the entire study period, pure 

change in technology and change in returns to scale of technology play positive roles, but 

pure efficiency change and scale efficiency change play negative roles. For the four FYP 

periods, it is obvious in Figure 3 that pure change in technology and change in returns to scale 

of technology are always major driving forces for integrated energy productivity growth. 

There is only one exception that pure change in technology plays a negative role in the 10th 

FYP period. Figure 3 further shows that pure efficiency decreases during the periods 

                                                             
10 For the discussions and comparisons of using a directional distance function with different directional 

vectors, see Färe er al. (2007) for a nonparametric DEA example, or Vardanyan and Noh (2006) for a 

parametric example. It should be clarified that the different directional vectors chosen can generate rather 

different estimates of inefficiencies both for nonparametric and parametric models and that no single 

estimation is superior to all others (Lee, 2015). 
11 Infeasibility is not specific to the Luengerber productivity indicator (or Malmquist index) and may be logically unavoidable under certain specifications of 

data structure, technology, and the choice of directional vector. Briec and Kerstens (2009) recommend simply reporting any 

infeasibility that occurs in the empirical analysis. 



 

2001-2005 and 2011-2012, and scale efficiency decreases during the periods 2006-2010 and 

2011-2012, both of which slow down integrated energy productivity growth. These findings 

indicate that over the entire study period, there exists an upward shift in energy technology in 

China and that this technical progress is the most important contributor for integrated energy 

productivity growth. However, contemporaneous pure technical efficiency decrease slows 

down China’s integrated energy productivity growth. 

[Insert Figure 3 here] 

 

4.2 Aggregated specific energy productivity change 

In this section, the productivity changes of specific energy inputs and aggregated specific 

energy productivity change are calculated. The normalized weight wh associated with each 

specific energy input in Model (2) is equalized (1/4) to avoid the effect of large degrees of 

difference on the magnitude of the consumption values of these four specific energy inputs. 

Similar treatment is utilized in the modeling of Kapelko et al. (2015) and Mahlberg and Shaoo 

(2011). The calculated results can be found in Table 2 and in Figure 4. 

[Insert Figure 4 here] 

When energy consumption structure is taken into consideration, the energy productivity 

growth becomes negative in the 10th FYP period and becomes lower in the other three FYP 

periods compared with integrated energy productivity growth in corresponding periods. For 

the entire study period, the aggregated specific energy productivity growth is lower than the 

integrated energy productivity growth, which is mainly denoted by an obvious shift in pure 

technology change from growth (1.01%) to decline (-1.66%). As we mentioned above, the 

present status of China in regard to resource endowment is rich in coal, short of oil, and 

lacking in natural gas, and compared with oil and natural gas, the utilization of coal is 

comparatively lower in efficiency and higher in carbon emissions in combustion processes. 

During our study period, on one hand, the percentage of coal consumption in the total final 

energy consumption decreased by 14%, and by 2012, this percentage was still as high as 

approximately 50%. On the other hand, the percentages of consumptions of oil and natural 

gas in the total final energy consumption increased by 2% and 3%, respectively, and by 2012, 

these resources together accounted for 27% of China’s total final energy consumption. 

Therefore, although the dominance of coal consumption in total final energy consumption has 

gradually begun to change, the energy consumption structure has not fundamentally changed 

during the study period. The dominance of coal consumption and the slow and unobvious 

improvements in energy consumption structure may result in lower aggregated specific 

energy productivity growth than integrated energy productivity growth. 

Next, we further analyze the contribution of the productivity change of each energy resource. 

It can be seen that (i) coal-specific productivity change is negative (-0.03%). Although its 

LTSC score is positive, indicating a positive change (2.18%) in returns to scale of technology, 

its LPEC, LPTC, and LSEC scores are all negative, indicating that for the utilization of coal, 

pure technical efficiency declines (-0.10%), pure technology regresses (-1.77%), and there is a 

negative change (-0.34%) in the shape of technology. (ii) Oil-specific productivity change is 

positive (2.43%), and productivity growth is due to increases in LPTC (1.54%), LTSC 

(0.91%), and LPEC (0.44%). (iii) Natural gas specific productivity change is negative 

(-0.69%). Although its LPEC, LSEC and LTSC scores are all positive, a significant pure 

technical regress (-6.11%) offsets these growth effects. (iv) Electricity-specific productivity 

change is positive (1.17%); this growth is mainly caused by increases in LPEC (0.38%) and 



 

LTSC (1.11%). 

Figure 5 illustrates the different contributions of LPEC, LPTC, LSEC, and LTSC to LP for 

each specific energy input over the entire study period. It is obvious that pure technical 

change is the largest driving force for both oil- and natural gas-specific productivity changes 

and is the second largest driving force for coal specific productivity change. We should note, 

however, that pure technical change plays a positive role in the growth of oil-specific 

productivity while reducing coal- and natural gas-specific productivities. Meanwhile, growth 

in returns to scale of technology is always the major driving force for growth on these four 

energy-specific productivities. 

[Insert Figure 5 here] 

It also can be seen in Figure 5 that for four energy-specific inputs, the joint effect of change 

on technology (pure technical change and change in returns to scale of technology) plays a 

more important role than the joint effect of efficiency change (pure technical efficiency 

change and scale efficiency change) in the growth of energy productivity. This outcome 

reveals that China’s energy-specific productivity changes can be attributed to technical 

changes rather than efficiency changes. Namely, the shift in technology contributes more than 

the catch-up effect to China’s aggregated specific energy productivity change. 

The above results and analysis raise the question of which specific energy inputs are the 

primary causes of changes in LP, LPEC, LPTC, LSEC, and LTSC. Figure 6 answers this 

question by illustrating the contributions of four types of specific energy inputs to energy 

productivity change. In summary, aggregated specific energy productivity growth is mostly 

driven by the productivity growth of oil overall in China, and within the specific productivity 

growth of oil, technical progress is identified as the largest driving force. 

[Insert Figure 6 here] 

 

4.3 Energy and environmental productivity change 

In this section, we absorb undesirable outputs (carbon emissions) into the measurement of 

productivity change to identify the role of emissions in energy productivity change. Models (3) 

and (4) are applied to measure aggregated specific energy efficiency with the consideration of 

undesirable outputs. Similarly, the weights wh and wf are equally assigned (1/5) because we 

have four specific energy inputs and one emission output. In addition, the normalized weights 

wE and wB are also equally assigned (1/2) because we consider that energy and environmental 

inefficiency measures have same importance in the estimation. The results are reported in the 

last five rows in Table 2 and illustrated in Figure 7. 

[Insert Figure 7 here] 

It can be seen that, over the entire study period, China’s energy productivity growth may be 

slightly underestimated if undesirable outputs are ignored. However, this underestimation is 

not consistent in different FYP periods. It is underestimated in the last four years of the 9th 

FYP period and the 11th FYP period, but overestimated in the 10th FYP period and first two 

years of the 12th FYP period. Several previous studies found that developing countries usually 

have lower productivity growth when undesirable outputs are taken into consideration (e.g., 

Zhang C. et al., 2011; Kumar, 2006). Our findings in the current study partially agree with this 

argument in the specific period that China’s energy productivity growth is underestimated if 

carbon emissions are ignored. However, it should be noted that our study specifically focuses 

on the identification of energy productivity change instead of total factor productivity change, 

as in previous studies. Furthermore, out results signify that different FYP periods exhibit 



 

different characteristics in regard to productivity change. For the periods 1997-2000, 

2006-2010, and 2011-2012, energy and environmental productivity experiences continuous 

growth. However, during the 10th FYP period, it experiences a decrease process. For the entire 

study period, the average energy and environmental productivity change is 0.97%, indicating 

a moderate improvement in the performance of energy utilization and carbon emissions 

control. 

Figure 8 further illustrates the differences between aggregated specific energy productivity 

change and energy and environmental productivity change through decomposed indicators. It 

is obvious that when ignoring undesirable outputs, LPEC, LPTC and LSEC may be 

underestimated but LTSC may be overestimated. This finding reveals that the role of 

undesirable output in energy productivity change varies. The consideration of CO2 emissions 

from energy utilization plays a positive role in pure technical efficiency growth and scale 

efficiency change, as well as pure technical change, but makes a negative contribution to the 

change in returns to scale of technology. This result partially supports the Porter Hypothesis 

(Porter and van der Linde, 1995) from the perspective of changes in pure technical efficiency, 

scale efficiency, and pure technology that environmental regulations can lead to productivity 

growth. 

[Insert Figure 8 here] 

 

5 Conclusions 

In this study, we sought to extend the literature on energy and environmental productivity 

analysis. Considering the argument that a government’s decision-making process in regard to 

energy policy requires an assessment of the productivity change of individual energy inputs to 

provide insights into the scope for improvement of the utilization of specific energy inputs, 

we develop a Luenberger aggregated specific energy productivity indicator and an energy and 

environmental productivity indicator which account for the various impacts of specific energy 

inputs and emission outputs towards the measurement of productivity change. The aggregated 

specific energy productivity indicator is shown as a combination of the individual energy 

input specific productivity indicators, and the integrated energy and environmental 

productivity indicator is shown as the combination of energy productivity and environmental 

productivity indicators. Furthermore, these Luenberger indicators can be further seen as the 

composite measurement of four factors: pure efficiency change, scale efficiency change, pure 

technology change and scale of technology change which help to identify the catch-up effect, 

frontier shift effect and the economy of scale towards productivity growth. This approach is 

used to analyze China’s energy and environmental productivity change over the period 

1997-2012. The empirical results are as follows. 

(i) When energy consumption structure is omitted, and without taking into account carbon 

emissions from fuel combustion, an average integrated energy productivity growth of 1.77% 

overall in China is observed in which the most significant growth is observed in the later 

years of the 9th Five-Year Plan period and the beginning years of the 12th Five-Year Plan 

period, yet the productivity change is negligible in the 10th FYP period. 

(ii) When energy consumption structure is taken into consideration, an average aggregated 

specific energy productivity growth of 0.78% overall in China is identified, which is 

approximately 1% lower than the integrated energy productivity growth. The obvious shift in 

pure technical change from positive under integrated energy productivity indicator to negative 

under aggregated specific energy productivity indicator explains this reduced level of 



 

productivity growth. This finding revels that the adjustment on energy consumption structure 

in China during the study period is not very effective, and China is still suffering from the 

restriction of energy resources endowment that coal consumption dominates the total final 

energy consumption. 

(iii) The measurement of specific energy input productivity change shows the contribution of 

each energy resource towards productivity change in China. First, oil and electricity inputs 

show positive contributions to aggregated specific energy productivity growth, but coal and 

natural gas inputs show negative contributions. Second, growth in returns to scale of 

technology is the largest driving force for both coal-specific and electricity-specific 

productivity growths; pure technical change is the largest driving force for both oil-specific 

productivity growth and natural gas specific productivity decline. Third, in general China’s 

energy-specific productivity changes are caused primarily by technical changes rather than 

efficiency changes. Namely, a shift in technology contributes more than the catch-up effect to 

China’s energy-specific productivity change. 

(iv) China’s energy productivity growth may be underestimated if CO2 emissions are ignored. 

In particular, when ignoring CO2 emissions, pure technical efficiency change, pure technology 

change, and scale efficiency change may be underestimated, but change in returns to scale of 

technology may be overestimated. This finding partially supports the Porter Hypothesis in 

China that environmental regulations can lead to productivity growth. 
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Figure 1 Distribution of specific final energy consumptions in total final energy consumption 

 

 

Figure 2 Ratio of GDP over final energy consumption 

 

 

Figure 3 Integrated energy productivity change and it decomposition 
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Figure 4 Aggregated specific energy productivity change and its decomposition 

 

 

Figure 5 Contribution of LPEC, LPTC, LSEC, and LTSC to energy-specific productivity change 

 

 

Figure 6 Contribution of energy-specific productivity change to aggregated specific energy 
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Figure 7 Comparison of two energy productivity indicators 

 

 

Figure 8 Comparison of two energy productivity indicators and their decomposed indicators 
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Table 1 Descriptive statistics of inputs and outputs 

Inputs and outputs Year Total Mean Max Min Std. dev. 

Desirable 

output 

GDP 

(billion RMB) 

1997 10292.92  343.10  1034.33  32.04  249.11  

2012 53825.01  1794.17  5476.47  172.13  1353.46  

        

Non-energy 

inputs 

Labor 

(thousand person) 

1997 635464.00  21182.13  50170.00  2354.00  13856.29  

2012 765292.68  25509.76  60313.01  2936.03  16980.12  

Capital 

(billion RMB) 

1997 16273.24  542.44  1515.85  63.74  381.84  

2012 135781.03  4526.03  12215.47  643.66  3015.93  

        

Energy input 
Total energy 

(million tce) 

1997 995.33  33.18  67.54  2.86  17.94  

2012 3217.83  107.26  288.71  15.39  65.08  

        

Specific energy 

inputs 

Coal 

(million tce) 

1997 614.73  20.49  49.64  0.46  11.40  

2012 1544.36  51.48  167.15  1.78  37.42  

Oil 

(million tce) 

1997 192.38  6.41  24.90  0.27  5.53  

2012 715.28  23.84  76.75  2.72  18.59  

Natural gas 

(million tce) 

1997 22.54  0.75  6.58  0.01  1.35  

2012 161.26  5.38  19.63  0.42  4.03  

Electricity 

(million tce) 

1997 165.69  5.52  15.16  0.28  3.91  

2012 796.92  26.56  73.94  2.67  18.66  

        

Undesirable 

output 

CO2 

(million tonne) 

1997 3068.66  102.29  223.93  6.69  59.00  

2012 9922.97  330.77  877.09  46.72  208.97  

 

  



 

 

Table 2 Productivity indicators 

Indicator Period LP LPEC LPTC LSEC LTSC 

Integrated energy productivity change 

1997-200

0 
0.0448  0.0091  0.0218  

-0.000

6  
0.0144  

2001-200

5 
0.0002  

-0.005

9  

-0.006

4  
0.0049  0.0076  

2006-201

0 
0.0180  

-0.000

5  
0.0145  

-0.001

8  
0.0058  

2011-201

2 
0.0201  

-0.008

3  
0.0226  

-0.008

1  
0.0140  

1997-201

2 
0.0177  

-0.001

4  
0.0101  

-0.000

2  
0.0092  

       

Aggregated specific energy productivity 

change 

1997-200

0 
0.0109  0.0201  

-0.018

2  

-0.015

7  
0.0247  

2001-200

5 

-0.002

8  

-0.003

2  

-0.034

0  
0.0094  0.0251  

2006-201

0 
0.0139  0.0000  

-0.005

0  

-0.002

3  
0.0212  

2011-201

2 
0.0139  0.0053  0.0002  

-0.005

0  
0.0134  

1997-201

2 
0.0078  0.0037  

-0.016

6  

-0.001

4  
0.0221  

       

Coal specific productivity change 

1997-200

0 
0.0397  0.0220  0.0110  

-0.020

2  
0.0269  

2001-200

5 

-0.005

5  

-0.011

7  

-0.038

8  
0.0104  0.0346  

2006-201

0 

-0.026

8  

-0.002

9  

-0.015

2  

-0.000

9  

-0.007

9  

2011-201

2 
0.0190  

-0.004

2  

-0.014

4  

-0.018

9  
0.0566  

1997-201

2 

-0.000

3  

-0.001

0  

-0.017

7  

-0.003

4  
0.0218  

       

Oil specific productivity change 

1997-200

0 
0.0223  0.0149  

-0.004

3  

-0.014

7  
0.0264  

2001-200

5 

-0.010

0  
0.0028  

-0.008

9  
0.0117  

-0.015

6  

2006-201

0 
0.0536  0.0032  0.0360  

-0.013

0  
0.0275  

2011-201

2 
0.0398  

-0.004

1  
0.0539  

-0.008

7  

-0.001

3  

1997-201 0.0243  0.0044  0.0154  -0.004 0.0091  



 

2 6  

       

Natural gas specific productivity change 

1997-200

0 

-0.025

8  
0.0239  

-0.055

4  

-0.019

4  
0.0251  

2001-200

5 

-0.008

4  

-0.002

5  

-0.080

8  
0.0093  0.0656  

2006-201

0 
0.0135  0.0002  

-0.040

4  
0.0047  0.0490  

2011-201

2 

-0.025

8  
0.0264  

-0.072

3  
0.0086  0.0115  

1997-201

2 

-0.006

9  
0.0075  

-0.061

1  
0.0020  0.0448  

       

Electricity specific productivity change 

1997-200

0 

-0.000

1  
0.0197  

-0.015

7  

-0.008

6  
0.0045  

2001-200

5 
0.0086  

-0.001

5  

-0.014

4  
0.0063  0.0182  

2006-201

0 
0.0176  

-0.000

3  
0.0002  0.0000  0.0178  

2011-201

2 
0.0227  0.0032  0.0334  

-0.000

9  

-0.013

1  

1997-201

2 
0.0117  0.0038  

-0.003

4  
0.0003  0.0111  

       

Energy and environmental productivity 

change 

1997-200

0 
0.0244  0.0221  0.0093  

-0.000

7  

-0.006

3  

2001-200

5 

-0.007

9  
0.0076  

-0.028

7  
0.0013  0.0120  

2006-201

0 
0.0179  0.0010  0.0102  

-0.003

9  
0.0107  

2011-201

2 
0.0112  

-0.009

9  
0.0058  

-0.001

2  
0.0165  

1997-201

2 
0.0097  0.0059  

-0.003

5  

-0.001

2  
0.0085  

 

 


