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Abstract: The better to explore the regional characteristics of inter-provincial CO2 emissions and the 

rational distribution of the reduction of emission intensity reduction in China, this paper proposes an 

improved PSO-FCM clustering algorithm. This method can obtain the optimal cluster number and 

membership grade values by utilizing the global capacity of Particle Swarm Optimization（PSO）on Fuzzy 

C-means（FCM）. The clustering results of CO2 emissions indicate that the 30 provinces of China are 

divided into five clusters and each has its own significant characteristics. Compared with other clustering 

methods, the results of PSO-FCM are more explanatory. The most important indicators affecting regional 

emission characteristics are CO2 emission intensity and per capita emissions, whereas CO2 emission per 

unit of energy is not obvious in clustering. Furthermore, some policy recommendations on setting emission 

reduction targets according to the emission characteristics of different clusters are made. 

 

Keywords: fuzzy C-means cluster; carbon emission; characteristics; mitigation policy 

1. Introduction 

Faced with the challenges of climate change, more and more countries are making unremitting efforts to 

mitigate global greenhouse gas (GHG) emissions [1, 2]. To demonstrate its commitment to reducing global 

emission, late in 2009, the Chinese government committed to cutting its carbon dioxide emission per unit 

of gross domestic product (GDP) by 40-45% of the 2005 levels by 2020, which had been declared in the 

Twelfth Five Year Plan of China's Economic Development to be a restrictive target. Although the national 

intensity reduction target is clearly set, how this target should be distributed among the various sectors, 

provinces and regions has not yet been determined. China covers a vast territory, but its energy resources 

are unevenly distributed. The considerable differences of socio-economic history and conditions among 

provinces have not only led to uneven levels of economic development, but also to regional differences in 

carbon emissions. The principle of "common but differentiated" is a reasonable base for the allocation of 

national intensity reduction obligations among provinces. On one hand, the inter-provincial differences in 

carbon emissions should be full considered. On other hand, provinces with the same carbon emission 

characteristics may be set a more uniform emission reduction obligation. Therefore, to provide a rational 

basis for allocation basis, all provinces should be divided into appropriate categories according to their 
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emission characteristics. On this basis, the present study attempts to answer the following questions: How 

many categories of carbon emission characteristics can be determined? What are the common 

characteristics of each category? What is the reason for these characteristics? How can the regional 

emission reduction targets be set according to these characteristics? 

The studies on carbon emission characteristics at provincial level in China in existing literature can be 

divided into four categories: (1) studies on the differences in carbon emissions from the perspective of the 

regional spatial geography.  Based on China's eastern, central, and western regional divisions in 

the Seventh Five-Year Plan of China's Economic Development ,scholars examined inter-provincial in 

equality in CO2 emission within China using usual measures of inequality (coefficient of variation, Gini 

index, Theil index ) to analyze provincial-level inequality [3-4]. (2) Discussions of the factors affecting 

carbon emissions using the Kaya equation (including the IPAT [5] and STIRPAT [6] models) and LMDI 

(Logarithmic Mean Division Index) decomposition analysis model [7-8]. (3) Descriptions of 

inter-provincial carbon emission characteristics based on statistical methods using indicators such as total 

CO2 emission, emission intensity, per capita emissions and so forth [9-11]. (4)Analyses of the relationship 

between carbon emission and industries or energy [12]. Moreover, Zhang et al. argued that a drastic 

structural change in energy use in China made it difficult for any region to reduce CO2 emissions in the 

short-term [13]. Furthermore, Wang et al. estimated the environmental efficiency, economic efficiency, 

economic environmental efficiency and two-stage efficiency of various provinces in China by considering 

carbon dioxide (CO2) emissions [14]. 

It can therefore be concluded that previous studies on China's regional carbon emissions have mainly 

been divided into three regions, namely eastern, central and western, which is the traditional division by 

economic development level.  However, there are some differences in the definitions of eastern, central 

and western, according to researchers’ requirements. It is therefore worth examining how closely the 

characteristics of the carbon emissions of China’s regions correspond to the traditional division by 

economic development level.  Hence, a new approach to studying the issue of China's regional clustering 

of carbon emission is required. 

Clustering analysis is an effective technique to divide a given set of data or objects into groups so that 

elements drawn from the same group are as similar to each other as possible, while those assigned to 

different groups are dissimilar. Thus, clustering analysis appears to be an appropriate choice for 

categorizing provinces with similar carbon emission characteristics and to facilitate the exploration of the 

specific characteristics of each category and its causes easily. There have been a few previous related 

studies. Yue and Zhu, using a statistical clustering method, divided the 30 provinces of China into four 

categories [15]. However, their statistical clustering, which included hierarchical clustering and systemic 

clustering, was based on crisp set, which divides the samples into one or the other category with a clear 

boundary. It does not reflect the intermediary of objective reality and is a hard partition. Conversely, the 

Fuzzy C-Means (FCM) algorithm, proposed based on fuzzy set theory, has been more widely used [16-19].  

FCM detects clusters that have centroid prototypes of a roughly similar size and describes the intermediary 

through the use of membership grade values [20]. Concerning carbon emission, Zhang et al., based on a 

Kaya equation, categorized China’s inter-provincial carbon emissions in terms of four regions [21]. 

However, their study applies a traditional fuzzy clustering method, which is simply a steepest descent 

algorithm with variable step length and often becomes stuck at suboptimal solutions based on the initial 

configuration [22]. In addition, the convergence and clustering results are easily influenced by initial value. 

This shortcoming is more prominent where there are a large number of clusters [23]. Therefore, to reduce 

the sensitivity of classification results, researchers have proposed the utilization of global intelligent 

optimization, for example, Genetic Algorithm (GA) [24-26] or Particle Swarm Optimization (PSO) [27-29] 

to replace the steepest descent optimization. The basic concept behind integrating intelligent optimization 



 

with FCM is the optimization of appropriate cluster centers at a previously-specified number of clusters. In 

most of the real-life situations the number of cluster in a data set is not known a priori. Furthermore, the 

object function or cluster validity index mainly applies to the traditional compactness measure function, 

which focuses only on the Euclidean distance-weighted sum between cluster centers and samples. 

From the above analysis, it can be concluded that there is a need for further study of the following: (1) as 

there are few descriptive indicators of the characteristics of carbon emission in the existing literature, more 

indicators reflecting the structure of emission should be considered, such as the proportion of industry 

emission and carbon emission per unit of energy. These will assist in the investigation of inter-provincial 

emission characteristics and the reasons for them. (2) In terms of carbon emission, the regions of China 

have traditionally been divided according to economic development level into eastern, central and western. 

Moreover, there are some differences in the definitions of the three regions definition according to 

researchers’ requirements. Therefore, further research on how to divide the regions of carbon emission is 

called for. (3) Cluster analysis on carbon emissions has mainly been carried out by traditional K-means 

clustering or FCM clustering. These methods require further improvement. The existing improved FCM 

based on GA or PSO focuses on optimizing the cluster center vectors at a given number of clusters and 

does not consider the separation of the categories; hence, they are still unable to obtain the optimal number 

of clusters. At the same time, studies on carbon emission clustering analysis mainly utilize the traditional 

K-means or fuzzy clustering. Thus the methods require further improvement. 

Therefore, the better to explore the regional characteristics of China's inter-provincial carbon emission, 

this paper proposes an improved PSO-FCM clustering algorithm. Its main feature is the addition of the 

distances between centers to the objection function and the optimization of the number of clusters by using 

discrete PSO. In order to divide the 30 provinces of China, have selected five indicators of carbon emission, 

namely, total CO2 emission; per capita CO2 emissions; emission intensity of CO2; CO2 emission per unit of 

energy, and; the proportion of industrial CO2 emissons. The optimal cluster number and membership grade 

values can be obtained through the use of the proposed PSO-FCM.  In addition, the characteristics and 

causes of each category have been thoroughly investigated. Furthermore, some policy recommendations on 

setting emission reduction targets have been proposed based on the emission characteristics of different 

clusters. 

 

2．Methodology and data 

2.1 The calculation of China’s CO2 emission     

According to IPCC (2007) Fourth Assessment Report, the main source of greenhouse gases is the 

combustion of fossil fuels (in 2004, around 95% of the world’s carbon emissions was ascribed to fossil fuel 

combustion) [30]. We calculate the CO2 emission of 30 provinces from fossil energy consumption data.       
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Where ijA  is the j th province’s real consumption of the i th fuel. The sum of the energy consumption 

conservation sectors (the heating supply industry and the thermal power industry) and the final 

consumption sectors (farming, forestry and animal husbandry; fisheries & water conservancy; industry；

construction; transport, storage and post; the wholesale and retail trades; hotels and restaurants；residential 

consumption, and; other); ijS  is the j th province’s non- combustion consumption of i th fuel. ie  is the 



 

net calorific value of the i th fuel; ic  is the carbon content of i th fuel; iO is the carbon oxidation rate of 

i th fuel. The coefficients of various types of energy can be found in reference [30]. 

 

2.2 PSO-FCM cluster method 

FCM can be summarized as follows. Given  NXXXX ,,, 21 =
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The so-called Iterative Self-Organizing Data Analysis Technique Algorithm (ISODATA) proposed by 

Bezdek is used to conduct the iterative operation, after initialization of matrix ( ) NcijU = 00  , for   
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It can be demonstrated that the operation is convergent in the case of 1h . Where 

 −+ ))()1(max( tt ikik . [31]. )(tik  is a membership grade belonging to the k th category of the t

iteration of the i th sample,   is prior given threshold of convergence, h  is the weight, usually set to 2. 

The traditional FCM algorithm has not yet discussed the optimal number of clusters, but only given a 

general range, namely Nc 2  for selecting the clusters. To solve this problem, Zhu et al revised the 



 

Eq. (1) into Eq. (5) [32]. 
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Where 
2

ji ZZ −  is the distance between the i th centers and the j th centers. The Eq.(5) not only 

considers the compactness of samples but also measures the separation of different categories. However, 

the basic GA is applied to optimize the number of clusters in the paper and the drawbacks of GA, such as 

prematurity and redundancy, have been clearly recognized [33]. Thus, to improve the efficiency of FCM, 

the present paper utilizes a discrete particle swarm optimization (DPSO) to optimize c . 

As a new global intelligent optimal algorithm, PSO mainly evolves via the comparison of the self 

position, and the surrounding positions [34]. Compared to GA, PSO has a much more profound and 

intelligent background and can be performed more easily without selection, crossover and mutation, as in 

GA [19, 35, 36]. 

This paper proposes an improved PSO-FCM clustering algorithm. The proposed algorithm flow is shown 

in Fig.1.In Fig.1, n  is the population size of particles; d  is the length of each particle,   is the 

threshold of convergence, and genmax_  is the max iterations of algorithms. In the velocity updating 
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Fig.1: Flow chart for PSO-FCM 

 

 

2.3 Data source 

The characteristics of CO2 emission can be depicted by five indicators: total CO2 emission, per capita 

emissions, CO2 emission per unit of GDP (intensity of CO2 emission), CO2 emissions per unit of energy 

and the proportion of industrial CO2 emissions, representing respectively the emission scale, average 

interpersonal emission efficiency, resource endowment and the structure of emissions. The present study 



 

selected the five indicators from 2000 to 2009 as the clustering index to explore the regional characteristics 

of China's inter-provincial carbon emissions.  

  Fossil energy consumption data on China’s 30 provinces were taken from the China Energy Statistical 

Yearbook (CESY) 2001-2010 (Hong Kong, Macao, Taiwan and Tibet are not included for lack of data and 

the data on Ningxia is from the year 2002); the data on GDP and population were taken from the 2010 

edition of the China Statistical Yearbook, and GDP is converted into 2000 constant price. According to 

equation 1, the average annual CO2 emissions of 30 provinces during the period of 2000-2009 are shown in 

Fig 2. 

 

Fig.2: The average CO2 emissions of each province from 2000 to 2009. 

3．Clustering results and cause analysis  

3.1 Clustering results  

In the proposed PSO-FCM method of the present study, the size of particles is 15=n  and the length of 

each particle is 5=d (because there are only 30 provinces in the study, 3025  ). The convergent threshold 

of ISODATA is 410−= ; the fitness objective function is Eq.(1); the iterations of particles is 

100max_ =gen . The fitness value changes are shown in Fig.3.  

After the selected characteristics of carbon emission data normalization and PSO-FCM implementation, 

the fitness value changes are shown in Fig.3.  It can be seen that the PSO-FCM obtained the optimal 

cluster number 5=c  at around 80 iterations, and the carbon emission characteristics of China’s provinces 

were divided into five categories. Furthermore, Fig. 3 also indicates that the convergence speed of the 

proposed PSO-FCM is faster than GA-FCM.  The best fitness value is 3.5088. To validate the number of 

clusters, the clustering objective function value vs. the number of categories is shown in Fig. 4, depicting 

the least value in 5 categories. The optimal membership grades are given in appendix A Table and the 

clustering results are shown in Table 1, based on the principle of the largest membership grade. Compared 

with K-means clustering and hierarchical clustering, the results of the proposed method are quite different, 

except in the first category. As in the third category, it is difficult to discover the common characteristics 

between Hainan, in which each index of emission is the least of the 30 provinces, and the provinces with 

higher indicators, such as Jiangsu, Zhejiang, Guangdong and so forth. On the contrary, they have quite 

different characteristics.  For example, the total CO2 emission ranks third of the 30 provinces, with Hainan 

in penultimate place. The per capita emission of Zhejiang is 2.89 times that of Hainan, which is only 1.54 

tons/ person. Furthermore, the CO2 emission intensity of Shaanxi is 3.30 tons/10 thousand Yuan, which is 

considerably higher than that of Hainan, which is 1.48 tons/10 thousand Yuan.  Although there are slight 
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discrepancies in the units of energy emission and the proportion of industrial final energy-related emission, 

these cannot exclude more provinces from falling into this category.  It is clear that the clustering results 

of K-means have little explanatory power. In terms of hierarchical clustering, Hainan has been placed in a 

separate category, but another twenty-two provinces, with significantly different emission characteristics 

have been clustered the same category, which does not appear logical.   

 

 

Fig.3 Fitness evolutions of the PSO-FCM and GA-FCM      Fig.4 Cluster numbers VS. Fitness values 

 

 

Table 1: The clustering results of PSO-FCM and comparisons with other methods  

 

Classes
 

PSO-FCM Cluster K-means  Cluster Hierarchical Cluster 

Class 1 Shanxi  Inner Mongolia  Ningxia  
Shanxi Inner Mongolia Ningxia 

Guizhou 

Shanxi  Inner Mongolia  Ningxia  

Guizhou 

Class 2 Tianjin  Shanghai 
Beijing Tianjin Jilin Shanghai  

Gansu  Qinghai  Xinjiang  
Hebei  Liaoning  Shandong   

Class 3 
Jiangsu  Zhejiang  Shandong  

Guangdong 

Heilongjiang  Jiangsu  Zhejiang  

Guangdong  Hainan  Shaanxi   
Hainan 

Class 4 

Hebei Liaoning Anhui Fujian  

Jiangxi Hubei Henan Guangxi  

Chongqing  Sichuan  Yunnan 

Anhui  Fujian  Jiangxi  Hubei  

Hunan Guangxi Chongqing  

Sichuan  Yunnan 

Beijing Tianjin Jilin Heilongjiang Shanghai  

Jiangsu Zhejiang Anhui Fujian Jiangxi  

Henan Hubei Hunan Guangdong Guangxi  

Chongqing Sichuan Yunnan Shaanxi Gansu  

Qinghai  Xinjiang  

Class 5 

Beijing Jilin Heilongjiang Hainan 

Guizhou Shaanxi Gansu Qinghai  

Xinjiang  

Hebei Liaoning  Shandong  

Henan  
 

*The clustering number of PSO-FCM is obtained by global optimization; K-means is set by the man-made 5; and the hierarchical cluster is decided by 

the maximum distance in categories in a tree diagram. 

3.2 Characteristics and cause analysis 

During the period between 2000 and 2009, the characteristics of China's inter-provinces carbon emission 

can be divided into five categories using the PSO-FCM method. The characteristics and their causes can be 

analyzed as follows. 

(1) The first category is "double high", with a high intensity of CO2 emission and a high per capita 

emission. This category is represented by Shanxi and Inner Mongolia provinces, which rank in the first 

class with a grade of more than 0.9 and which have significant characteristics. Looking at the data, it can be 

clearly seen that the emission intensity of CO2 in these provinces (more than 0.73 tons/ thousand Yuan) is 

much higher than in other provinces. It is almost twice the national average level (0.37 tons/thousand Yuan). 

At the same time, the emission intensity of CO2 in these provinces is also much higher, at 1.76 times as the 
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national average (4.31 tons/person), as shown in Fig. 5. 

 

Fig.5 Scatter diagram of tCO2 emission intensity and per capita emission 

 

The main reasons for the appearance of this characteristic can be summarised as follows: 

Firstly, there is the impact of resource endowment. China's main coal-rich provinces are Shanxi, Inner 

Mongolia, Shaanxi, Guizhou and Xinjiang. As shown in Fig. 6, the CO2 emission intensity in these 

provinces is higher than others. More specifically,  in the period 2000 to 2009, the coal resource reserves 

of Shanxi and Inner Mongolia comprised 31.90% and 21.41% respectively of China’s entire coal resource 

reserves, , although their total GDPs were only 1.75% and 1.74% respectively of China’s national GDP. 

Similarly, although the coal resource reserves of Ningxia comprised 1.94% of the country’s total coal 

resource reserves, ranking No. 12 in the thirty province of China, Ningxia’s total GDP accounted for only 

0.26% of national GDP, giving it penultimate ranking in the country. 

 

Fig. 6: Scatter diagram of CO2 emission intensity and coal resource reserves (2000-2009) 

 

Secondly, there is the impact of industry structure. The provinces of the first category are the major 

regions of energy production and processing. In addition, the proportion of energy-intensive industries, 

which are dominated by coal mining and processing industries, as well as the low technology of 

energy-consuming equipment, lead to a high emission intensity of carbon dioxide. From 2000 to 2009, the 

proportion of secondary industries of Shanxi, Inner Mongolia and Ningxia were 56.16%, 47.01% and 48.61% 

respectively, higher than the national average level of 46.40%. In particular, Shanxi has the largest 
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proportion of secondary industry in all provinces 

Finally, there is the impact of the national energy strategy layout. In 2011, the China land space 

development plan, "The Main Function of National Planning", stated that China would focus on 

constructing Shanxi, the Ordos Basin, eastern Inner Mongolia, southwestern of China, and Xinjiang as the 

five integrated national energy bases. It is well known that Shanxi, Inner Mongolia and Ningxia provinces 

have all been included in the comprehensive national energy bases. Shanxi, the Ordos Basin and eastern 

Inner Mongolia are focused on constructing the energy industries such as thermal power, coal mining and 

processing industries. From 2000 to 2009, the annual coal consumption of Shanxi, Inner Mongolia, and 

Ningxia was 4296.61 tce, 4866.72 tce, and 846.10 tce, respectively. However, the total CO2 emissions from 

thermal power of these provinces were 42.18%, 54.80% and 54.54%, respectively shown in Fig. 7. These 

three provinces have undertaken a large CO2 emission transference to other provinces as part of their 

economic development. 

 

Fig.7: The proportion of thermal power CO2 emissions of the first category provinces in China 

 

（2）Tianjin and Shanghai, directly governed by the central government, belong to the second category. 

The grade of this class can reach up to 0.99. This type of carbon emission has the characteristics of high per 

capita emission and low intensity. These two cities have high per capita carbon dioxide emissions (over 

7.90 tons per person), 1.80 times of the average national level (4.30 tons per person).  However, their 

carbon intensity (less than 2.90 tons / 10 thousand Yuan), which is less than the 79.00% average national 

level (3.70 tons /10 thousand Yuan), is relatively low, as illustrated in Fig 5. 

The main causes of these characteristics are as follows. First, these two cities are located in eastern 

coastal areas, where there is a high level of economic development and have a great demand for fossil 

energy. As a result, they have high carbon dioxide emissions. However, according to National Residence 

Register, the population is small; therefore, these cities have high per capita carbon dioxide emissions. 

From 2000 to 2009, the carbon dioxide emissions of Tianjin and Shanghai represented 1.84% and 3.70% of 

the national total emission respectively, while their populations only comprised 0.83% and 1.37% of the 

country’s total population.  Accordingly, these two cities had the highest per capita carbon dioxide 

emissions. (However, it should be noted here that both Tianjin and Shanghai have large floating population, 

while only the official Residence Register figures are taken into account. If the floating population was 

taken into consideration, the per capita carbon dioxide emission could fall to some extent.) 

  Secondly, Shanghai, at the head of the Yangtze River Delta, has begun to make changes in its economic 

structure and is gradually becoming the national center of overseas trade, finance and R & D. The 

proportion of secondary industry, which produces high carbon dioxide emissions, is in decline, with its 
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proportion falling from 47.30% in 2000 to 39.90% in 2009. Tianjin, the northern economic center, has seen 

a rapid increase in GDP during the last ten years, but the proportion of its secondary industry has remained 

at around 50.00%.  At the same time, due to their lack of fossil fuel energy, most of their electric power is 

provided by other provinces. From 2000 to 2009, the annual transferred proportion of the electricity 

consumed in Tianjin and Shanghai rose from around 11.98% and 21.07% to as much as 27.33% and 

33.80%, respectively, as illustrated in Fig 8. In view of electricity in China being generated mainly by 

thermal power, Tianjin and Shanghai have already diverted a certain large amount of carbon dioxide 

emissions, so that their emission intensities have become lower than the national average level. 

 

Fig.8: The proportion of imported electricity consumption amount in the total consumption  

of the second category provinces  

 

(3) The CO2 emissions of the third category provinces amount to more than 210.00 million tons, but per 

capita emissions are less than 5.00 tons. Thus, the characteristic of these provinces can be described as high 

total emission and low per capita emission, as illustrated in Fig.9. The provinces in this category are mainly 

coastal regions such as Jiangsu, Zhejiang, Shandong, and Guangdong, and a large province in central China, 

Henan. The total CO2 emission of these provinces is much higher than the national average level (about 

165.29 million tons), comprising around 31.79% of CO2 emission of China. 

 

Fig. 9: Scatter diagram of the total CO2 emissions and per capita emissions of each province （2000-2009） 
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According to the Kaya equation, factors contributing to CO2 emissions are population, economic 

development, energy intensity and energy structure. The first two factors are the main driving factors. The 

presence of such characteristics in the five provinces are mainly due to large economic size and population 

size, leading to high total emission, although per capita emission is not high. 

In an analysis of the five provinces belonging to the third category, it can be seen from Fig. 10 that those 

whose average GDP comes in the top 5 out of the 30 provinces from 2000 to 2009 accounted for 41.00% of 

China’s GDP.  With the expansion of total economic output, energy-related CO2 emissions are 

accelerating in an upward trend, which means that these provinces are developing economically at the cost 

of excessive energy consumption. 

Furthermore, provinces in the third category also have large populations. These five provinces made up 

31.00% of the population of China from 2008 to 2009. Among these provinces, Henan, Shandong and 

Guangdong take the first three places with populations of 94.86 million, 92.32 million and 87.67 million 

respectively, while Jiangsu and Zhejiang account for 5.84% and 3.78%, respectively, of the total population, 

as shown in Fig 11. Therefore, the “double high” of economic scale and population has led to the 

characteristics of these provinces, which are high total emissions but low per capita emissions. 

 

Fig. 10: The GDP rankings and proportions of the third category provinces (2000-2009) 
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Fig.11: The proportion of the populations of the third category provinces in relation to the total population of China 

 

 (4) The fourth category consists of the provinces which have many final industries consuming a great 

deal of fossil fuel energy. The provinces whose proportion of the industrial carbon dioxide emission is more 

than 40.00%, but with an intensity of less than 5.00 tons/10 thousand Yuan, are the industrial provinces of 

Hebei, Liaoning, and Anhui. The characteristic of these provinces is that the proportion of industrial carbon 

emissions is high, while the intensity is low, as illustrated in Fig 12. 

 

Fig. 12: Scatter diagram of the emission intensity and proportion of industrial emissions (2000-2009) 

 

The main causes for this high proportion of industrial emissions and low intensity are as follows. 

Firstly, the industrial GDP is higher than 50.00% among some of the fourth category provinces, such as 

Hebei and Liaoning, where average industrial GDP in industry accounted for 51.73% and 50.39% 

respectively from 2000 to 2009. In these two provinces, the metallurgy industry and the oil processing 

industry consume a great deal of fossil fuel energy, resulting in high proportions of industrial emissions. 

Secondly, because of the particular regional situation, provinces in this area, apart from Anhui, are 

neither centralised heating supply provinces nor thermal power generation provinces.  However, the 

proportion of energy transfer sector (providing heating supply and thermal power generation) consumption 

is low compared to the total energy consumption and the final energy is mostly consumed by the industrial 

sector. Taking the consumption of coal in 2009 as an example, for example, in the provinces belonging to 

the fourth category, the consumption of the thermal power generation and heating supply was lower than 

the national average level of 53.86%, while industry final consumption was higher than the national 

average level of 21.45%.  Of these provinces, Sichuan, Chongqing, Guangxi, Hunan and Hubei had 
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industry final consumptions exceeding 40%, around twice the national average level, as illustrated in Fig. 

13. 

Thirdly, the provinces in the fourth category do not have abundant energy resources. The total emission 

of carbon dioxide in most provinces is lower than the average level of the thirty provinces, while the scales 

of GDP are average, so that their intensity is not the highest. 

 

 

Fig. 13: The proportions of energy consumption of thermal power, heating supply and the industrial sector  

in the fourth category provinces in 2009 

 

（5）The fifth category mainly comprises the remaining provinces, whose characteristics are not 

particularly significant. The grade of some of the provinces belonging to this category is not high. For 

example, Beijing, Hainan and Guizhou have only about 0.5. Through careful analysis, it can be concluded 

that the total CO2 emission is less than 150 million tons, lower than the national average level of 165.29 

million tons. Furthermore, the proportion of industrial discharge is less than 37.00%, which does not reach 

the national average level (38.74%), as illustrated in Fig.14.  Although Ningxia would be classified into 

this group based on this characteristic, its grade in the first category is as high as 0.91. Therefore, the 

classification method of PSO-FCM does not place it in this group. 

 

Fig. 14: Scatter diagram of the total emissions and the proportion of industrial emissions (2000-2009) 
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4 Main conclusions and implications for policy on setting emission reduction targets 

4.1 Conclusions 

(1) Taking into account inter-category and within-category distances, the proposed PSO-FCM clustering 

method can partition samples more effectively.  Moreover, PSO-FCM can obtain the global optimal 

number of clusters and membership grade values. Compared to other traditional clustering methods, the 

results of PSO-FCM method are more explanatory and rational.  

(2) During the period between 2000 and 2009, the characteristics of China's inter-provincial carbon 

emissions can be divided into five categories. These are the "double high" category, with a high intensity of 

CO2 emission and high per capita emission, represented by Shanxi and Inner Mongolia provinces; the “high 

per capita-low intensity" category, with high per capita emission but low emission intensity, represented by 

Shanghai and Tianjin; "high emission-low per capita" category with high total emission but relatively low 

per capita emission, represented by Jiangsu and Zhejiang; "high industry-low intensity" category with a 

high ratio of industrial emission and low emission intensity, represented by Hebei and Liaoning; and the 

"double low" category, with low emission and low industrial emission, represented by Beijing and Jilin.  

(3) The two most important indicators affecting the regional characteristics of China’s carbon emission 

are CO2 emission intensity and per capita emission, while the role of CO2 emission per unit of energy in the 

classification is not apparent. The main reason for this situation is that energy consumption is based mainly 

on coal consumption in each province, with little difference among provinces. For example, from 2000 to 

2009, the national average level of emission per unit of energy was 2.48 t / tce, while the variance between 

the 30 provinces was only 0.01; thus, its impact on the regional characteristics of carbon emission is not 

significant. In fact, there would be no significant change in classification results if this indicator was 

removed.  

4.2 Implications for policy on setting emission reduction targets 

Based on the analysis of clustering characteristics and their causes in the carbon emissions of China’s 

provinces, the major policy recommendations on setting emission reduction targets for different regions are 

as follows. The targets can be set to vary from category to category, categories, and provinces belonging to 

the same category can have the same target.  

 (1)Although the provinces in the first group have the highest carbon emissions of the 30 provinces of 

China and therefore have the greatest potential for cutting their carbon dioxide emissions, the target for 

these provinces should not be set as the highest of all the provinces. The reason for this is that is that the 

national energy strategy and energy resource endowments must be taken into consideration, as these take a 

considerable amount of transferred carbon emissions of other provinces. In contrast, the provinces in the 

third category, whose emissions and GDP are the highest in China, can have their target set as the highest of 

all the provinces of China. On one hand, this could encourage them to take advantage of economics and 

technology to improve energy efficiency or to support clean energy construction. On the other hand, they 

could be pressed to accelerate the promotion of high discharge industry in order to promote the 

development of the low carbon service industry.      

(2) Despite the carbon intensity of the fourth group being less than the national average level, the 

proportion of industrial sector emissions is relatively high and the energy efficiency of the industrial sector 

is very low. Thus, the target could be set to national average level, namely 40-45%. However, the provinces 

of fifth category, in which total emission and the proportion of industrial sector emissions are not high, 



 

could be set a target lower than national average level. 

  (3) Based on the characteristics of carbon emissions and the reasons for them, the target of the provinces 

in the second group could be set to be similar to that of the third category provinces. In sum, the targets of 

the five categories can be arranged in the following order: third category >second category >first category 

(national level)>fourth category >fifth category.  
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Appendix A 

 

The membership grades of energy -related CO2 emission characteristics from 2000-2009 according to 

province 

 

Provinces Class 1 Class 2 Class 3 Class 4 Class 5 Provinces Class 1 Class 2 Class 3 Class 4 Class 5 

Beijing 0.0198 0.3054 0.0899 0.1001 0.4848 Henan 0.0096 0.0242 0.7244 0.129 0.1128 

Tianjin 0.0007 0.9953 0.001 0.0008 0.0022 Hubei 0.0033 0.0135 0.0256 0.9361 0.0214 

Hebei 0.141 0.1271 0.239 0.3992 0.0937 Hunan 0.0001 0.0003 0.0006 0.9981 0.0008 

Shanxi 0.9181 0.0245 0.0175 0.0207 0.0193 Guangdong 0.0018 0.0119 0.9478 0.0095 0.029 

Inner Mongolia 0.9394 0.0294 0.0123 0.005 0.014 Guangxi 0.0015 0.003 0.0039 0.9850 0.0067 

Liaoning 0.1493 0.2212 0.2466 0.2643 0.1186 Hainan 0.0275 0.1239 0.1776 0.0915 0.5795 

Jilin 0.0305 0.0818 0.0701 0.0497 0.7679 Chongqing 0.0011 0.0032 0.0034 0.9854 0.0069 

Heilongjiang 0.0045 0.0409 0.1249 0.0138 0.8159 Sichuan 0.0013 0.0055 0.0193 0.9429 0.031 

Shanghai 0.0012 0.9917 0.0033 0.0008 0.003 Guizhou 0.2152 0.0617 0.092 0.0644 0.5667 

Jiangsu 0.009 0.0302 0.8896 0.0129 0.0582 Yunnan 0.0017 0.0038 0.0064 0.9688 0.0194 

Zhejiang 0.0032 0.0476 0.8135 0.0139 0.1218 Shaanxi 0.0008 0.0033 0.009 0.0037 0.9831 

Anhui 0.0001 0.0002 0.0004 0.9987 0.0007 Gansu 0.0017 0.0037 0.0056 0.0093 0.9797 

Fujian 0.0065 0.0661 0.1209 0.4221 0.3844 Qinghai 0.0048 0.0184 0.013 0.0559 0.9079 

Jiangxi 0.005 0.0127 0.0217 0.8936 0.0669 Ningxia 0.9055 0.0372 0.0121 0.0109 0.0345 

Shandong 0.0129 0.0346 0.8892 0.0334 0.0298 Xinjiang 0.0019 0.0141 0.0091 0.0038 0.9711 

 

 


